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Coordinate systems useful for those designing target tracking algorithms are discussed. Strict internationally recognized definitions of terrestrial 
and celestial coordinate systems are addressed, as well as a number of other lesser coordinate systems that arise when dealing with data typically 
used in target tracking algorithms. International organizations defining standard systems are indicated, as well as where to obtain data. Limita-
tions in the data are demonstrated and methods for determining one’s orientation using gravitation and magnetic measurements, as well as using 
stars, are presented. The report focuses on implementing the coordinate-system standards using freely available data and software but does not 
provide specific details on the strict definitions of all of the standards. More detailed information sources are provided in an extensive reference 
list. So readers can better reproduce the results in this report, summaries of the sources of the data and external code used in creating the plots in 
the report are provided. All online sources in this report were verified as of April 2015 or later. Even if high-precision global coordinate system 
definitions are not necessary to meet the basic requirements of a tracking network, they can be necessary in evaluating the performance of tracking 
algorithms in such a network.
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EXECUTIVE SUMMARY

When tracking targets over long ranges, it is essential that all sensors in a network translate their measure-
ments or tracks into a common global coordinate system. This report addresses how international standards
setting organizations and real data are used to define usable realizations of common terrestrial and celestial
coordinate systems. It quantifies the magnitudes of errors that arise when establishing a coordinate sys-
tem due to a number of model limitations and physical effects (other than measurement errors), such as the
ground physically moving due to tides. This report brings together concepts across multiple fields to demon-
strate how one’s orientation can be determined using magnetic, gravitational, and celestial measurements.
Links and references where one can find real data and code necessary for simulating and using standard
celestial and terrestrial coordinate systems are provided.
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AN OVERVIEW OF MAJOR TERRESTRIAL, CELESTIAL, AND TEMPORAL
COORDINATE SYSTEMS FOR TARGET TRACKING

1. INTRODUCTION

Three previous tutorials have focused on the use of nonlinear three-dimensional (3D) monostatic and
bistatic measurements, in general [55], and in refractive environments [54], as well as the use of arbitrary
nonlinear continuous-time dynamic models [57]. However, a prerequisite to performing accurate tracking in
a global environment is the establishment of a common coordinate system across sensors. Indeed, compen-
sation for the effects of atmospheric refraction discussed in [54] might be completely useless if the pointing
direction of the sensor cannot be determined to a sufficient precision.

This report looks at strict, internationally recognized definitions of terrestrial and celestial coordinate
systems as well as a number of other lesser coordinate systems that arise when dealing with data typically
used in target tracking algorithms. Section 2 reviews Cartesian celestial and terrestrial coordinate systems,
while Section 3 goes over time standards. Differing time standards might initially seem to be a trivial detail
when performing target tracking, except for the fact that the temporal standards are intertwined with celestial
coordinate systems due to general relativity.

When simply tracking aircraft for air defense purposes, one would assume that celestial coordinate
systems are of little importance. However, celestial objects can play a role in establishing the global look
directions of each radar in a network to a high precision (networked sensor registration). Additionally, one
should be able to identify celestial objects to avoid confusion with true targets. For example, as shown in real
weather-radar data in [139], the Sun can increase the clutter background of a radar in a particular direction.1

Knowing the location of the Sun can be useful in advanced target tracking algorithms that try to account for
reduced target detection probabilities of targets near interference sources as in [185, Ch. 7.2, 7.3]. However,
to identify the location of the Sun relative to an observer, one might be able to convert between celestial and
terrestrial coordinates.

Section 4 provides an overview of basic coordinate systems for determining the location of an observer
with respect to the surface of the Earth. This covers geodetic, geocentric, and ellipsoidal harmonic coor-
dinates.2 Geodetic coordinates are how one typically reports locations on a map in terms of latitude and
longitude. However, geodetic coordinates are taken with respect to a reference ellipsoid, whereas many
think that it is with respect to a sphere, as is the case with geocentric coordinates. Ellipsoidal harmonic
components shall play a role in gravitational models later in the report.

Manuscript Approved July 22 2016.
1This is because, as discussed in [98, Ch. 3.1], for wavelengths longer than 0.4 µm, the spectrum of the Sun is approximately the

spectrum of a black body having temperature 5760K, meaning that within the radio bands typically used by radar, solar interference
increases with increasing frequency.

2Section 4 does not cover different projections that one might use when creating maps, as the different projections tend to be
of limited use in target-tracking systems except for the display of data to the user; see [65, 302] for information on basic map
projections.
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On the other hand, a lot of confusion can arise when making more intelligent tracking algorithms that
utilize terrain data. This could be, for example, to determine whether a missile will hit a mountain or go over
a mountain, or to determine whether a mountain is obscuring the view of a target. Digital terrain elevation
data (DTED) is often given in terms of orthometric heights, whereas one typically expects a height reported
to match an elevation reported by a Global Positioning System (GPS) receiver. Section 5 describes different
vertical datums that one might encounter when designing a target-tracking system. Such datums are often
defined in terms of the Earth’s gravitational field, requiring more physics than one would expect. Section
5 also reviews the definition of pressure altitudes, which one must be familiar with when using data from
aircraft transponders that report pressure altitude.

One generally wants to have to account for as few physical effects as possible while still meeting any
requirements for the accuracy of a system. Sections 5, 6, and 7 consider the effects of the strict definitions
of the Earth’s gravitational field, the effects of tides, and models for the Earth’s magnetic field. At first
glance, each of these effects can appear to be insignificant. However, all of them can be significant in certain
applications. For example, as discussed in Section 6, tides can move points on the surface of the Earth by
tens of centimeters. Some global navigation satellite system (GNSS) receivers try to “correct” for tides,
producing coordinates for stationary objects that do not appear to move over time but which will then not
represent “true” coordinates in an Earth-centered Earth-fixed (ECEF) coordinate system [264].3 Depending
on the application and level of precision desired in a sensor network, such corrections may or may not be
necessary or desirable. For example, for high-precision tracking of orbital debris, such shifts might matter.
The magnetic field plays a role when tracking ships using transponder data as ships often report their heading
with respect to magnetic North. However, one might be tempted to also use the magnetic field to align radars
in a network. Section 7 demonstrates that magnetic field models are not suitable for high-accuracy global
direction estimation.

The establishment of a common coordinate system in a sensor network is an ostensibly simple task:
One can use a receiver for signals from a global navigation satellite system (GNSS), such as the United
States’ GPS, whose interface is described in [11], to determine the location of all of the sensors to an
accuracy better than 5cm [113].4 However, the determining the orientations of the sensors is much more
difficult. In the target tracking literature, numerous algorithms for determining the orientation of a sensor in
a global coordinate system exist. However, such algorithms generally require an initial estimate of a sensor’s
orientation. For example, the algorithms presented in [59, 204, 324] and [372] all use linear approximations
to deal with small errors in the range, elevation, and azimuth measurements of multiple sensors in three
dimensions. Such approximations are useless without an initial estimate. Moreover, if the local vertical of
the radar is itself biased, the corrections for the bias cannot be expressed as constant additive or multiplicative
modifications to the measured azimuthal angle.5 The vertical bias problem is worse when considering
algorithms such as those in [1, 247, 250, 371] and [373] that try to establish a common two-dimensional
(2D) coordinate system among multiple sensors, as might be the case when using multiple radars that are
incapable of making elevation measurements. If the radars are designed such that their local verticals align
with the local gravitational verticals, then the planes in which their measurements are taken do not coincide

3For example, the open-source GPS Toolkit (GPStk) [120] includes a class for solid-Earth tides, as documented at http:
//www.gpstk.org/doxygen/SolidEarthTides 8hpp.html .

4Some of the highest-precision commercially available receivers can be found by searching for “real-time kinematic GPS re-
ceiver” online.

5Consider a sensor with the boresight direction along the z-axis that is observing a target with zero elevation and azimuthal
angle q . In the extreme case, if the boresight direction is rotated 90˝, the target will have zero azimuthal angle regardless of the
original angle q , since the projection of the vector into the rotated plane is zero.
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and it is not possible to establish a common 2D coordinate system among the radars. Over short distances,
an ad hoc 2D coordinate system can be established, but it will never be of high precision. On the other
hand, algorithms for aligning a 2D sensor with 3D sensors do exist [128, 130]. However, the nonlinear
bias estimation algorithms of [132, 189] and the linearized algorithms of [129, 284, 321], which explicitly
consider biases in the 3D sensor orientation, all require initial orientation estimates.

To fill the gap in the tracking literature for establishing a 3D global coordinate system without any
prior information, Section 8 brings together all of the general concepts discussed in this report to present
two techniques for determining a sensor’s orientation in a global coordinate system. One method utilizes
geomagnetic and gravitational measurements, the other uses measurements of stars;6 both techniques are
based on the same underlying algorithm. Section 8 demonstrates how a wide variety of physical effects
must be taken into account for high-precision orientation estimation. The problem of sensor localization is
not addressed, because one can simply purchase a commercially available GPS receiver.7

The report is concluded in Section 9, where specific contributions of the report not already present in the
literature are highlighted. Appendix M lists abbreviations and acronyms used in the report.

This report focuses on implementing the coordinate-system standards using freely available data and
software and does not provide specific details on the strict definitions of all of the standards. More detailed
information can be found in the references in Table 1. So that readers can better reproduce the results in this
report, Table 2 summarizes the sources of the data and external code used in creating the plots in this report.
All online sources in this report were verified as of April 2015 or later.

Even if high-precision global coordinate system definitions are not necessary to meet the basic require-
ments of a tracking network, they can be necessary in evaluating the performance of tracking algorithms in
such a network. For example, Automatic Dependent Surveillance-Broadcast8 (ADS-B) signals sent from
aircraft or Automatic Identification System9 (AIS) messages broadcast y ships can be used as “truth” data
against which estimation and tracking algorithms can be compared, because such transponders provide
identifying numbers and the Global Positioning System (GPS) locations of planes/ ships, among other in-
formation. Such data is widely available.10

6Whereas the majority of algorithms for sensor registration for tracking applications focus on the use of common observations
of aircraft, the explicit use of observed aircraft is not considered here for the simple reason that such algorithms will not work if
very few aircraft are present. For example, after the terrorist attacks in the United States on 11 September 2001, the airspace over
the United States and Canada was closed for a few days [201]. Additionally, aircraft and satellites are not point targets. In the
radar community, it has long been known that the apparent location of an aircraft can vary significantly depending on its shape and
reflectivity [143].

7Commercial GPS solutions are often significantly cheaper than designing a GPS receiver from the ground up – a task that is
much more complicated than it seems. To design a GPS receiver, a number of possibly time-consuming, ad hoc fixes are necessary
to correct for poor satellite design, which varies from satellite to satellite. For example, as described in [310], the L5 signal on
satellite SVN49 is corrupted with a multipath return because of reflections from an auxiliary port to the satellite’s antenna array and
its broadcast ephemerides are biased by 150m. Failure to include satellite-specific corrections will result in degraded performance.

8The standards for ADS-B transponders are maintained by the Radio Technical Commission for Aeronautics (RCTA). A list of
the documents defining the standard is available at http://adsb.tc.faa.gov/ADS-B.htm The documents can be expensive to
those who are not members of RCTA. A detailed description of the data (ADS-B and otherwise) broadcast by Mode S transponders,
which tend to be the most common internationally, is available (for a price) from the International Civil Aviation Organization
(ICAO) [150].

9Specifications on AIS transponders are available for free from the International Telecommunication Union (ITU) at [155].
10Most modern aircraft are equipped with transponders supporting ADS-B, and all aircraft operating in Class A, B, and C

airspace in the United States (generally all commercial aircraft) are required by U.S. law to carry such transponders as of 1 January
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Table 1: References for the Definitions of Modern Celestial and Terrestrial Coordinate Systems

Standard Description Reference

Standard for terrestrial and celestial http://maia.usno.navy.mil/conv2010/IERS Conventions 2010 coordinate systems http://tai.bipm.org/iers/conv2010/
Errata and changes since the http://maia.usno.navy.mil/conv2010/convupdt.htmlIERS Conventions Updates last conventions release http://tai.bipm.org/iers/convupdt/listupdt.html
Coordinate-system standard for the http://earth-info.nga.mil/GandG/publications/WGS 84 Standard United States Department of Defense NGA STND 0036 1 0 0 WGS84/NGA.STND.0036 1.0.0 WGS84.pdf

Explanatory Supplement to the Explains the use of the many
Astronomical Almanac coordinate systems in detail Book: [332]

Errata for the Explanatory
Supplement http://aa.usno.navy.mil/publications/docs/exp supp errata.pdf

The Astronomical Almanac for Book: [70]
the Year 2014 The Navy’s astronomical almanac Associated Sites: http://asa.usno.navy.mil and http://asa.hmnao.com
Errata 2014 Errata for the Astronomical Almanac http://asa.usno.navy.mil/Errata/Errata 2014.html
Time from Earth Rotation to
Atomic Physics Describes international time standards Book: [226]

Note that the Explanatory Supplement to the Astronomical Almanac in [332] refers to the 2014 edition
of the almanac, not the frequently cited but out-of-date 1992 edition [285].

2020 [89] (similar regulations exist in Europe [81]). Similarly, the International Maritime Organization’s (IMO) Safety of Life at
Sea (SOLAS) Convention [152] mandates that a transponder supporting AIS be carried by all passenger ships, ships of 300 gross
tonnage(Gross tonnage is not a measure of weight). Rather, it is a measure of the volume of a ship [151].
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Table 2: Sources of the External Data and Code Related to the Plots in this Report

Description Reference Uniform Resource Locator (URL)
Gravitational Model Data and Documentation

EGM2008 Tide-Free and Zero-Tide Spherical-Harmonic Coefficients http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/first release.html
EGM2008 Height Anomaly to Geoid Undulation Coefficients http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08 wgs84.html
Detailed Report on the EGM96 Model (Predecessor to EGM2008) [198] http://bowie.gsfc.nasa.gov/697/staff/lemoine/EGM96 NASA-TP-1998-206861.pdf
Document on the Development of the EGM2008 Model & Errata [252, 253]

Tide Model Data and Documentation
ftp://tai.bipm.org/iers/convupdt/chapter6/tidemodels/fes2004 Cnm-Snm.dat
http://maia.usno.navy.mil/conv2010/convupdt/chapter6/tidemodels/FES2004 Ocean Tide Coefficients
fes2004 Cnm-Snm.dat

Document on the Development of FES2004 [209] ftp://tai.bipm.org/iers/temp/FES2004 tides Biancale/FES2004.pdf
IERS Subroutines for Tides (Chapter 7), including step2diu http://maia.usno.navy.mil/conv2010/software.html
and step2lon with dehanttideinel ftp://tai.bipm.org/iers/convupdt/chapter7/
IERS Conventions 2010 Tide Model [257, Ch. 6,7] http://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html
A Solid Tide Potential Model Simpler than in the IERS
Conventions [332, Ch. 5]

Earth Magnetic Field Data, Documentation, and Software
EMM2010 Spherical-Harmonic Magnetic Coefficients http://www.ngdc.noaa.gov/geomag/EMM/
WMM2010 Spherical-Harmonic Magnetic Coefficients http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml
WMM Documentation (Relevant to the EMM too) [223] http://www.ngdc.noaa.gov/geomag/WMM/data/WMM2010/WMM2010 Report.pdf

http://citeseerx.ist.psu.edu/viewdoc/Documentation for a Predecessor to the EMM [219] download?doi=10.1.1.380.1319&rep=rep1&type=pdf
Software Created for the Simulations in this Report
Performing Spherical-Harmonic Magnetic Field
Synthesis (Choose David F. Crouse)

http://www.ngdc.noaa.gov/geomag/WMM/thirdpartycontributions.shtml

Earth Terrain Models and Documentation
Earth2012 Spherical-Harmonic Terrain Coefficients with Water http://geodesy.curtin.edu.au/research/models/Earth2012/
Article on Models Used Deriving Earth2012 [135] http://www.cage.curtin.edu.au/ will/2011JB008878.pdf
DTM2006.0 Spherical-Harmonic Terrain Coefficients http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/first release.html

http://earth-info.nga.mil/GandG/wgs84/gravitymod/new egm/EGM08 papers/Document on the Development of the DTM2006.0 [251] NPavlis&al S8 Revised111606.pdf

Reference Station Positions
ITRF2008 Station Positions and Velocities http://itrf.ign.fr/ITRF solutions/2008/
Open Access Article Describing the ITRF2008 [7] http://link.springer.com/article/10.1007/s00190-011-0444-4
Description of the Solution (Software/Technique) Independent http://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/
Exchange (SINEX) Format sinex cont.html

Planetary Ephemeris Data, Software, and Documentation
SPICE Toolkit Software (with Documentation) http://naif.jpl.nasa.gov/naif/toolkit.html
The DE430 Ephemerides for SPICE http://naif.jpl.nasa.gov/pub/naif/generic kernels/spk/planets/

http://naif.jpl.nasa.gov/pub/naif/generic kernels/spk/planets/Documentation for the DE430 Ephemerides [95] DE430%20and%20DE431.pdf

Star Catalog Data and Documentation
The Hipparcos Catalog (The New Reduction, I/311) http://cdsarc.u-strasbg.fr/viz-bin/Cat?cat=I/311
Description of the New Reduction [346] http://arxiv.org/abs/astro-ph/0505432
Validation of the Catalog [347] http://arxiv.org/abs/0708.1752
Extensive Documentation on the Original Hipparcos Catalog [82] http://www.rssd.esa.int/index.php?project=HIPPARCOS&page=Overview
Errata for the Original Hipparcos Catalog http://cdsarc.u-strasbg.fr/viz-bin/getCatFile Redirect/?-plus=-%2B&I/239/errata.htx

Earth-Orientation Parameters, Software, and Documentation
http://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.htmlEarth-Orientation Parameter Data According to the IERS http://www.usno.navy.mil/USNO/earth-orientationConventions http://hpiers.obspm.fr/eop-pc/

The NGA’s Earth-Orientation Parameter Predictions
(Not used in the Simulations) http://earth-info.nga.mil/GandG/sathtml/eopp.html

Explanation of IERS Bulletins A and B Parameters http://hpiers.obspm.fr/eoppc/bul/bulb/explanatory.html
Documentation on the Combined Solution C04 [30] http://hpiers.obspm.fr/iers/eop/eopc04/C04.guide.pdf
Code to Add Tides when Interpolating EOPs
(interp and Subroutines) http://hpiers.obspm.fr/eop-pc/index.php?index=models

General Software for Astronomy and Time Conversions
The IAU’s Standards of Fundamental Astronomy Software [146] http://www.iausofa.org

Software for Optimal 2D Assignment
An overview of 2D assignment algorithms; the appendix
in each paper contains Matlab code. [53, 56]

Simple Map Data
The Global, Self-Consistent, Hierarchical, High-Resolution
Geography Database (GSHHG) (coasts and political boundaries) [359] http://www.soest.hawaii.edu/pwessel/gshhg/

Shape File Format Definition [79] http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
M Map: Free Software to Read Shapefiles in Matlab
(Cannot be Used in a Commercial Product!) http://www2.ocgy.ubc.ca/ rich/map.html

All software and data except for M Map appear to be usable in commercial products with nothing more than an attribution
to the source. However, developers should verify the licensing terms with an attorney before use in any product.
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2. CELESTIAL AND TERRESTRIAL COORDINATE SYSTEMS

Due to the complexity of defining global celestial and terrestrial coordinate systems, international stan-
dards form the backbone of national standards. For example, since the advent of GPS, one of the most
frequently encountered terrestrial coordinate systems is the United States Department of Defense’s (U.S.
DoD’s) World Geodetic System 1984 (WGS 84) [69]. While the WGS 84 standard is developed and main-
tained by the United States’ National Geospatial-Intelligence Agency (NGA),11 it is in close agreement with
international standards. The latest version of the WGS 84 standard used by U.S. DoD agrees with the align-
ment and location of the axes in the latest (2008) version of the International Terrestrial Reference Frame
(ITRF) [66, 68], which is a realization of the International Terrestrial Reference System (ITRS) defined by
the International Earth Rotation and Reference Systems Service (IERS). Differences between the WGS 84
and ITRF2008 arise due to differences in points of reference used to implement the standards, as discussed
in [136, Ch. 2.11], and both standards are identical within the precision bounds of the ITRF definition.

Other countries maintain similar levels of compliance with international standard. The Russian Feder-
ation’s GNSS system, GLONASS,12 whose interface is described in English in [263], uses the Parametry
Zemli 1990 (PZ-90) coordinate system [348]. The latest version of the PZ-90 coordinate system (PZ-90.11)
is consistent to a centimeter-level precision with the ITRF2008 at epoch 2011 [349]. The GNSS system
run by China is the BeiDou Satellite Navigation System (BDS), whose interface is described in [48]. The
BDS uses the Chinese Geodetic Coordinate System 2000 (CGCS2000), which is consistent with an older
(ITRF97) version of the ITRF [365]. The axes of all GNSS systems coincide with those of the ITRF2008.
The Galileo Terrestrial Reference Frame (GTRF), the coordinate system of Europe’s GNSS system (the
interface is described in [83]) which is still under development, agrees with the ITRF2008 to the millime-
ter level [6]. Many countries are harmonizing their GNSS systems through participation in groups like the
United Nations Office for Outer Space Affairs, International Committee on Global Navigation Satellite Sys-
tems.13 Other countries, such as Japan, with its Quasi-Zenith Satellite System (QZSS) [148], and India, with
the GPS-Aided GEO Augmented Navigation (GAGAN) system [180, 267], use GPS augmented with their
own satellites.

The ITRF and WGS 84 standards are realizations of ECEF coordinate systems: Their origins coincide
with the center of mass of the Earth and their axes rotate with the Earth’s crust. The axes are what are
termed “geographical axes” in [237] in that they are defined by the relative position and motion of numerous
reference stations on the Earth’s surface. The ITRF is a realization of the ITRS in that it defines specific
points of reference, whereas the ITRS defines the coordinate system in a more abstract manner. According
to Chapter 4.1 of the (older) 2003 version of the IERS conventions [225],14

A Terrestrial Reference System (TRS) is a spatial reference system co-rotating with the
Earth in its diurnal motion in space. In such a system, positions of points attached to the solid
surface of the Earth have coordinates which undergo only small variations with time, due to

11The NGA was formerly known as the National Imagery and Mapping Agency (NIMA), which itself formed in part from the
Defense Mapping Agency (DMA). A brief history of the agency can be found at [246].

12In Russian: ГЛОНАСС=ГЛОба́льная НАвигацио́нная Спу́тниковая Систе́ма or Global Navigation Satellite System.
13The harmonization of satellite navigation systems simplifies the fusion of signals from multiple systems for more robust

localization. For example, Apple’s iPhone starting with the 4S model uses the United States’ GPS jointly with Russia’s GLONASS
system [273] for improved localization reliability.

14The current (2010) version of the IERS conventions [257] does not redefine a TRS and a TRF; it simply does not provide as
concise an explanation of the two systems.
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geophysical effects (tectonic or tidal deformations). A Terrestrial Reference Frame (TRF) is
a set of physical points with precisely determined coordinates in a specific coordinate system
(Cartesian, geographic, mapping...) attached to a Terrestrial Reference System. Such a TRF is
said to be a realization of the TRS.

On the other hand, the term “WGS 84 standard” refers both to an abstract standard described in [69] and
to its implementation. As mentioned in [66], implementations of the WGS 84 in terms of reference points
often have names like G1150, where ‘G’ refers to the use of GPS measurements to obtain coordinates and
‘1150’ is the GPS week number when the coordinates were implemented into the NGA’s GPS ephemeris
estimation process.

When describing celestial bodies, the U.S. Navy’s astronomical almanac uses a realization of the Inter-
national Celestial Reference System (ICRS) as its primary coordinate system [70, Ch. B, L]. Both the ICRS
and ITRS are defined by the IERS in their conventions [257]. The ICRS defines the alignment of the axes of
a celestial coordinate system (that does not rotate with the Earth). However, the Geocentric Celestial Ref-
erence System (GCRS) and the Barycentric Celestial Reference System (BCRS) place the ICRS axes either
at the center of mass of the Earth, for the GCRS, or at the center of mass of the solar system for the BCRS.
Both the BCRS and GCRS are defined within a general relativistic framework, which necessitates the def-
inition of specific relativistically consistent timescales. Section 3 maps out the international organizations
that play fundamental roles in defining celestial and terrestrial timescales.

When describing the location of objects on or near the Earth, non-Cartesian coordinate systems, such
as the familiar geodetic latitude and longitude, are often used. Section 4 describes a number of common
coordinate systems for specifying the location of points on or near the Earth and how they relate to the
approximate gravitational shape of the Earth. Note, however, that a very large number of alternate, local
implementations of terrestrial coordinate systems exist in different countries for legal as well as practical
purposes. Countries generally define legal boundaries in terms of geographic landmarks or in terms of
geodetic latitude and longitude using their own local datums (manner of defining horizontal and vertical
locations) to maintain a consistent set of boundaries in spite of plate tectonics. For example, certain reference
stations in Australia moved approximately 2cm between 1996 and 1998 [329], and if national boundaries
were defined solely in terms of coordinates in the ITRF2008, then the western part of France and Spain
would be slowly becoming ocean at a rate of centimeters per year while Russia consumes the eastern part
of Europe as the Eurasian plate moves East, as can be seen from Fig. 1, which shows the locations and
direction vectors of the stations defining the ITRF2008.

Thus, the European Union has the European Terrestrial Reference System (ETRS), a datum defined
such that coordinates throughout the European Union do not change much over time. The ETRS is realized
through the European Terrestrial Reference Frame 1989 (ETRF89) (see http://www.epncb.oma.be ),
which can be transformed to the ITRF [117]. However, individual countries within the European Union
define local coordinates in terms of their own datums. For example, SAPOS15 provides coordinates within
the ETRS for places in Germany [117].

Even in the United States, where the WGS 84 coordinate system is a DoD standard, the National Geode-
tic Survey (NGS) (see the web site at http://www.ngs.noaa.gov ) defines the horizontal datum for

15SAPOS stands for “Satellitenpositionierungsdienst der deutschen Landesvermessung,” which means satellite positioning ser-
vice of the German national survey.
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Fig. 1: Location points and direction vectors indicating the relative degree of motion in the local tangent plane (with the vertical
defined by the WGS 84 reference ellipsoid) of the stations defining the ITRF2008 at the epoch of the data 2005.0 (the timescale was
not specified; presumably TT was used). Red points and arrows refer to GNSS stations, green to very long baseline interferometry
(VLBI) stations, dark blue to satellite laser-ranging (SLR) stations and dark blue to Doppler Orbitography and Radiopositioning
Integrated by Satellite (DORIS) stations. Station motion is on the order of centimeters per year, presumably a Julian year in
terrestrial time (31,557,600 seconds per Julian year). The data for the outlines of the continents are from the Global Self-Consistent,
Hierarchical, High-Resolution Geography Database (GSHHG) listed in Table 2 along with links to software for reading one type
of file format of the data. (The software was tested, but not used to make this plot. Rather, the ASCII version of the data was read
directly into Matlab and plotted, with care taken at the ˘180˝ boundary.)

the United States to be the North American Datum of 1983 (NAD 83).16 Consequently, a point in latitude
and longitude on the WGS 84 reference ellipsoid (as one might obtain using a GPS receiver) will not align
with a point having the same latitude and longitude in the NAD 83 standard [306]. A discussion of the time
dependence of datums around the world is in [301]. To convert between a number of different local and
global datums as well as many different map projections, one can use the free Mensuration Services Pro-
gram (MSP) Geographic Translator (GEOTRANS) that is offered with source code in C++ and Java from
the NGA at http://earth-info.nga.mil/GandG/geotrans/ and is documented in [17, 18]. Al-
ternatively, one can perform a number of datum conversions using the function in the NGS Geodetic Tool
Kit, which can be downloaded from http://www.ngs.noaa.gov/TOOLS/ and is described in a number
of articles in Professional Surveyor starting with [368], which are all available on the NGS web site. Datum
conversions are constantly updated and are not described in this report. The European Petroleum Survey
Group (EPSG) of the International Association of Oil and Gas Producers (IOGP) maintains an online reg-
istry of datums at http://www.epsg.org that assigns each datum a spatial reference system identifier

16The current version is NAD 83(2011).
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(SRID). For example, the WGS 84 standard has identifiers 7030, 6326, and 4326, each addressing different
aspects of the standard.

The IERS conventions [257] form the basis of the most important Cartesian celestial and terrestrial
coordinate systems. A large number of organizations play a role in contributing to the celestial and terrestrial
standards set by the IERS, as illustrated in Fig. 2. The centers of the International Gravity Field Service
(IGFS) and the IERS Product Centers are all sources of geophysical data. The Commission on International
Coordination of Space Techniques for Geodesy and Geodynamics (CSTG) is an example of one of many
entities that work to standardize techniques between space geodetic organizations.
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Fig. 3. A subset of the tangled web of international organizations behind many of the standards that form the basis of terrestrial and celestial coordinate
systems. The IERS is the primary organization in internationally standardizing celestial and terrestrial coordinate systems, which are described in its conventions
[257]. The ICSU WDS is a multidisciplinary organization that supplanted the Federation of Astronomical and Geophysical Data Analysis Services (FAGS).
The ISG used to be known as the International Geoid Service (IGeS). A number of professional organizations, such as the Institute of Navigation (ION),
as well as many governmental organizations, including the NGA and the Naval Observatory in the United States, also play a role in establishing standard
coordinate systems.

either in the Cartesian location of networked sensors or in the
measurements of the sensors. That is, the algorithms do not
explicitly solve for the actual orientation of the sensor and an
initial estimate is necessary. For example, [61], [204], [324],
and [371] all use linear approximations to deal with small
errors in the range, elevation, and azimuth measurements of
multiple sensors in three dimensions. However, these algo-
rithms cannot be used for high-precision corrections if the
local vertical at each of the sensors is biased, because, as
illustrated in Fig. 2, the corrections for the bias cannot be
expressed as constant additive-or-multiplicative modifications
to the measured azimuthal angle.

The vertical bias problem is worse when considering algo-
rithms such as [1], [247], [250], [370], and [372] that try to
establish a common 2D coordinate system among multiple
sensors, as might be the case when using multiple radars
that are incapable of making elevation measurements. If the
radars are designed such that their local verticals align with
the local gravitational verticals, then the planes in which their

measurements are taken do not coincide and it is not possible
to establish a common 2D coordinate system among the radars.
Over short distances, an ad-hoc 2D coordinate system can be
established, but it will never be of high precision. On the other
hand, algorithms for aligning a 2D sensor with 3D sensors
do exist [129], [131]. Though, the nonlinear bias estimation
algorithms of [133], [189] and the linearized algorithms of
[130], [284], [321], which explicitly consider biases in the 3D
sensor orientation, all require initial orientation estimates.

In contrast, Section VIII of this report discusses how to
perform sensor registration without an initial estimate using a
gravitational and a magnetic-field estimate. It also discusses
how the estimate can be refined using star measurements.
Though the star-based orientation-estimation algorithm re-
quires an initial estimate (or a brute-force search), citations
for star-based orientation estimation with no prior information
are provided.

Whereas the majority of algorithms for sensor registration
for tracking applications focus on the use of common obser-

Fig. 2: A subset of the tangled web of international organizations behind many of the standards that form the basis of terrestrial
and celestial coordinate systems. The IERS is the primary organization in internationally standardizing celestial and terrestrial co-
ordinate systems, which are described in its conventions [257]. The ICSU WDS is a multidisciplinary organization that supplanted
the Federation of Astronomical and Geophysical Data Analysis Services (FAGS). The ISG used to be known as the International
Geoid Service (IGeS). A number of professional organizations, such as the Institute of Navigation (ION), as well as many govern-
mental organizations, including the NGA and the Naval Observatory in the United States, also play a role in establishing standard
coordinate systems.
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A number of coordinate systems defined in the IERS conventions [257] are related to each other in Fig.
3. Though other celestial and terrestrial coordinate systems exist, such as the International Astronomical
Union’s (IAU’s) galactic coordinate system [31], most such systems are not as useful to engineers designing
tracking algorithms. The primary coordinate system for tracking distant objects in space, such as plan-
ets, meteors, or stars, is the BCRS. It is the ICRS with barycentric coordinate time (TCB) defined as the
timescale. Whereas in relativity theory there is no “absolute rest” so all motion must be defined in a rela-
tive manner, there does exist an absolute state of non-rotation as exemplified by Mach’s paradox [187, Ch.
3.1.5]. The ICRS defines a non-rotating, approximately inertial coordinate system whose origin is at the
center of mass of the solar system, but does not explicitly define a timescale. Inertial or pseudo-inertial co-
ordinate systems are useful for expressing orbital or ballistic dynamics as they avoid the need for “phantom”
acceleration, such as the Coriolis effect, as explained in Appendix A.
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Fig. 5. The base coordinate system for tracking in the solar system is the BCRS, which is the ICRS, which has no explicit time component, with TCB
added as time. The ICRS is realized using star catalogs as the ICRF in radio wavelengths and the HCRF in optical wavelengths. Alternatively, the UCAC
can be used in place of the HCRF for more precise results. The pseudo-inertial reference frame for tracking near-Earth objects is the GCRS, which is a type
of ECI coordinate system. The GCRS is related to the BCRS by an affine transform, placing its origin at the center of the Earth and using a appropriately
relativistically scaled time scale, the TGB. The GTRS is a fixed-Earth model of which the common realization is the ITRS, whose definition is consistent with
many models of the past. The ITRS is realized through the ITRF, which is essentially the same as the current version of the WGS 84 standard, except for
the definition of the reference ellipsoid. Actual conversions between frames can be complicated and are generally performed with the aid of two intermediate
reference frames, namely, the Celestial Intermediate Reference Frame (CIRS) and the Terrestrial Intermediate Reference System (TIRS) [257], [187, Ch. 9].
ECEF coordinate systems are generally realized using a timescale other than TCG.

look as if they are placed on a faraway sphere (they are all
around). The alignment of the axes is defined with respect to
a specific date (called an epoch). The reference epoch for the
ICRS is called J2000.0, which refers to noon (1200 hours)
in terrestrial time (TT) on January 1st in the year 2000 in
the Gregorian calendar (the standard calendar used throughout
most of the world today). Terrestrial time is shortly before
noon time coordinated universal time (UTC) on that same date.

The orientation of the axes in the ICRS are nominally based
on the orientation of the mean equator and dynamical equinox
at the reference epoch. The x´ and y-axes are in the plane
of the celestial equator with the x-axis (also known as the
origin of right ascension) pointing toward the dynamical vernal
equinox at epoch.13 The z-axis is orthogonal to the plane of
the celestial equator and points in a general northerly direction.
The celestial equator is the projection of the Earth’s equator
onto the celestial sphere. The ecliptic is a circle projected on
the celestial sphere that coincides with the orbit of the Earth
around the Sun and is tilted roughly 23.4˝ from the celestial
equator along the x-axis [285, Ch. 3.53]. The ecliptic is the
same as the apparent direction of the Sun in the sky as the
Earth orbits the Sun. An equinox is when the ecliptic intersects
the celestial equator. That is, the equinox occurs when the Sun
appears to pass through these points in the sky. There are two
equinoxes each year. The vernal equinox occurs when the Sun
appears to be going from South to North in the sky. In reality,
the ecliptic is not a perfect circle and the equator of the Earth

13The symbol P, which also marks the x-axis in Fig. 4, represents the
zodiacal constellation Aries. In ancient Greek times, the vernal equinox
pointed in the direction of Aries. Nowadays, it points toward the constellation
Aquarius due to precession (Precession is discussed in detail in Appendix
E). A brief discussion on the history of the constellations and the zodiacal
precession is given in [280].
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Fig. 6. The right ascension and declination in the ICRS of the stars near
Barnard’s star (in red) over a period of 80 years based on data in the Hipparcos
catalog (Barnard’s star is catalog entry 87937). One can see that Barnard’s
star has a large proper motion (the overlapping red circles), whereas the
other stars barely move. The declination of the star is increasing as time
progresses. The plot demonstrates how not all stars are poor for use as
reference points in defining a non-rotating celestial coordinate system due
to their large motion over the years. The function iauPmsafe in the IAU’s
Standards of Fundamental Astronomy (SOFA) library were used to change the
epoch of the data. The points in red are at the epoch of the Hipparcos catalog
(1994.25 TT), and 20 Julian years (a Julian year being precisely 365.25 days)
prior and 20, 40, and 60 Julian years posterior to the epoch of the catalog.

wobbles with respect to the celestial sphere. Thus, the ICRS is
nominally defined in terms of mean values of these quantities.

As noted in [353], practical systems align their axes based
on the locations of stars, so the precise definitions of the mean
equator and dynamical equinox at epoch (which are compli-

Fig. 3: The base coordinate system for tracking in the solar system is the BCRS, which is the ICRS, which has no explicit time
component, with TCB added as time. The ICRS is realized using star catalogs as the ICRF in radio wavelengths and the HCRF
in optical wavelengths. Alternatively, the UCAC can be used in place of the HCRF for more precise results. The pseudo-inertial
reference frame for tracking near-Earth objects is the GCRS, which is a type of ECI coordinate system. The GCRS is related to the
BCRS by an affine transform, placing its origin at the center of the Earth and using an appropriately relativistically scaled timescale,
the TGB. The GTRS is a fixed-Earth model of which the common realization is the ITRS, whose definition is consistent with many
models of the past. The ITRS is realized through the ITRF, which is essentially the same as the current version of the WGS 84
standard, except for the definition of the reference ellipsoid. Conversions between frames can be complicated and are generally
performed with the aid of two intermediate reference frames, namely, the Celestial Intermediate Reference Frame (CIRS) and the
Terrestrial Intermediate Reference System (TIRS) [187, Ch. 9] [257]. ECEF coordinate systems are generally realized using a
timescale other than TCG.

On the other hand, the GCRS has its origin located at the center of mass of the Earth and uses the
geocentric coordinate time (TCG) scale but the orientation of its axes matches the orientation of the ICRS
axes. In much of the target tracking literature, when discussing tracking satellites around the Earth or
ballistic missiles, a nebulously defined Earth-centered inertial (ECI) coordinate system is used. The GCRS
as realized using observation-based references can be a solid definition of a practical ECI coordinate system
for tracking.
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The timescales associated with each of the coordinate systems are inherently linked to the location of the
reference clock when determining the simultaneity of events to an extremely high precision. This is because,
as discussed in [145], special relativity theory tells us that events that appear simultaneous to one observer
might appear non-simultaneous to another moving observer, even after accounting for the propagation time
of light. The offset between the clocks of the observers depends on their relative velocities. Thus, by defining
the reference “clock” for TCB to be at the center of mass (or inertia) of the solar system and the reference
clock for TCG to be located at the center of mass of the Earth, one defines time scales that are linked to
spatial coordinate systems in which events can be deemed simultaneous or not. The relativity of simultaneity
is usually ignored, but can be significant depending on the application. For example, as described in [4], one
must account for the relativity of simultaneity to get GPS localization accuracy down to below one meter.
The necessity of defining high-precision coordinate systems simultaneous with timescales arises from the
link between space and time in relativity and theory and is discussed in more detail in Section 3.

Figure 4 shows the alignment of the axes in the BCRS and GCRS coordinate systems, which is that of
the ICRS. The “celestial sphere” just represents sets of directions in space. The idea comes from the fact
that the stars in the sky somewhat look as if they are placed on a faraway sphere (they are all around). The
alignment of the axes is defined with respect to a specific date (called an epoch). The reference epoch for
the ICRS is called J2000.0, which refers to noon (1200 hours) in terrestrial time (TT) on 1 January 2000 in
the Gregorian calendar (the standard calendar used throughout most of the world today). Terrestrial time is
shortly before noon time coordinated universal time (UTC) on that same date. 7
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Fig. 4. The BCRS and GCRS coordinate systems have the same alignment
of axes, that of the ICRS. In the BCRS, the origin is at the barycenter of
the solar system. In the GCRS, it follows the center of mass of the Earth.
The x-axis (sometimes labeled P) points approximately in the direction of
the mean vernal equinox at epoch, and the celestial equator is approximately
the mean equator at epoch. The mean ecliptic at epoch intersects the celestial
equator along the x-axis. Over time, the ecliptic can shift. The z-axis is
chosen to be in the direction of the northern hemisphere, perpendicular to
the celestial equator. The y-axis completes a right-handed coordinate system.
Right ascension � (celestial longitude) and declination � (celestial latitude)
form a spherical coordinate system. The angle of the ecliptic to the celestial
plane � is known as the obliquity of the ecliptic.

vations of aircraft, the explicit use of observed aircraft is not
considered for the simple reason that such algorithms will not
work if very few aircraft are present. One cannot assume that
easily detectable or cooperative aircraft are always in the air.
For example, after the terrorist attacks in the United States
on September 11th, 2001, the airspace over the United States
and Canada was closed for a few days [201]. Additionally,
aircraft and satellites are not a point targets. In the radar
community, it has long been known that the apparent location
of an aircraft can vary significantly depending on its shape and
reflectivity [144]. While this bias might be insignificant when
orienting radars for tracking aircraft, it is likely to be extremely
significant if one tries to orient radars using aircraft when one
also wants to track satellites or long range ballistic missiles
with the same radar. On the other hand, the use of stars or
satellites might be sufficient for both applications. The report
is concluded in Section IX, where specific contributions of
the report not already present in the literature are highlighted.
Appendix M lists abbreviations and acronyms used in the
paper.

II. CELESTIAL AND TERRESTRIAL COORDINATE SYSTEMS

The IERS conventions [257] form the basis of the most im-
portant Cartesian celestial and terrestrial coordinate systems. A
large number of organizations play a role in contributing to the
celestial and terrestrial standards set by the IERS as illustrated
in Fig. 3. The parts of the International Gravity Field Service
(IGFS) and the IERS Product Centers are all sources of geo-
physical data. The Commission on International Coordination

of Space Techniques for Geodesy and Geodynamics (CSTG)
is an example of one of many entities that work to standardize
techniques between space geodetic organizations.

A number of coordinate systems defined in the IERS
conventions [257] are related to each other in Fig. 5. Though
other celestial and terrestrial coordinate systems exist, such
as the International Astronomical Union’s (IAU’s) galactic
coordinate system [32], most such systems are not as useful
to engineers designing tracking algorithms. The primary co-
ordinate system for tracking distance objects in space, such
as planets, meteors, or stars, is the BCRS. It is the ICRS
with barycentric coordinate time (TCB) defined as the time
scale. Whereas in relativity theory there is no “absolute rest”
so all motion must be defined in a relative manner, there
does exist an absolute state of non-rotation as exemplified
by Mach’s paradox [187, Ch. 3.1.5]. The ICRS defines a
non-rotating, approximately inertial coordinate system whose
origin is at the center of mass of the solar system, but does
not explicitly define a timescale. Inertial or pseudo-inertial
coordinate systems are useful for expressing orbital or ballistic
dynamics as they avoid the need for “phantom” acceleration,
such as the Coriolis effect, as explained in Appendix A.

On the other hand, the GCRS has its origin located at
the center of mass of the Earth and uses the geocentric
coordinate time (TCG) scale but the orientation of its axes
matches the orientation of the ICRS axes. In much of the
target tracking literature, when discussing tracking satellites
around the Earth or ballistic missiles, a nebulously defined
Earth-centered inertial (ECI) coordinate system is used. The
GCRS as realized using observation-based references can be
a solid definition of a practical ECI coordinate system for
tracking.

The timescales associated with each of the coordinate sys-
tems are inherently linked to the location of the reference clock
when determining the simultaneity of events to an extremely
high precision. This is because, as discussed in [146], special
relativity theory tells us that events that appear simultaneous
to one observer might appear non-simultaneous to another
moving observer, even after accounting for the propagation
time of light. The offset between the clocks of the observers
depends on their relative velocities. Thus, by defining the
reference “clock” for TCB to be at the center of mass (or
inertia) of the solar system and the reference clock for TCG to
be located at the center of mass of the Earth, one defines time-
scales that are linked to spatial coordinate systems in which
events can be deemed simultaneous or not. The relativity
of simultaneity is usually ignored, but can be significant
depending on the application. For example, as described in [5],
one must account for the relativity of simultaneity to get GPS
localization accuracy down to below one meter. The necessity
of defining high-precision coordinate systems simultaneous
with timescales arises from the link between space and time in
relativity and theory and is discussed in more detail in Section
III.

Figure 4 shows the alignment of the axes in the BCRS and
GCRS coordinate systems, which is that of the ICRS. The
“celestial sphere” just represents sets of directions in space.
The idea comes from the fact that the stars in the sky somewhat

Fig. 4: The BCRS and GCRS coordinate systems have the same alignment of axes, that of the ICRS. In the BCRS, the origin is at
the barycenter of the solar system. In the GCRS, it follows the center of mass of the Earth. The x-axis (sometimes labeled P) points
approximately in the direction of the mean vernal equinox at epoch, and the celestial equator is approximately the mean equator at
epoch. The mean ecliptic at epoch intersects the celestial equator along the x-axis. Over time, the ecliptic can shift. The z-axis is
chosen to be in the direction of the northern hemisphere, perpendicular to the celestial equator. The y-axis completes a right-handed
coordinate system. Right ascension a (celestial longitude) and declination d (celestial latitude) form a spherical coordinate system.
The angle of the ecliptic to the celestial plane e is known as the obliquity of the ecliptic.
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The orientation of the axes in the ICRS is nominally based on the orientation of the mean equator and
dynamical equinox at the reference epoch. The x- and y-axes are in the plane of the celestial equator with
the x-axis (also known as the origin of right ascension) pointing toward the dynamical vernal equinox at
epoch.17 The z-axis is orthogonal to the plane of the celestial equator and points in a general northerly
direction. The celestial equator is the projection of the Earth’s equator onto the celestial sphere. The ecliptic
is a circle projected on the celestial sphere that coincides with the orbit of the Earth around the Sun and is
tilted roughly 23.4˝ from the celestial equator along the x-axis [285, Ch. 3.53]. The ecliptic is the same
as the apparent direction of the Sun in the sky as the Earth orbits the Sun. An equinox is when the ecliptic
intersects the celestial equator. That is, the equinox occurs when the Sun appears to pass through these
points in the sky. There are two equinoxes each year. The vernal equinox occurs when the Sun appears to
be going from South to North in the sky. In reality, the ecliptic is not a perfect circle and the equator of the
Earth wobbles with respect to the celestial sphere. Thus, the ICRS is nominally defined in terms of mean
values of these quantities.

As noted in [354], practical systems align their axes based on the locations of stars, so the precise
definitions of the mean equator and dynamical equinox at epoch (which are complicated) do not matter
in practice. The International Celestial Reference Frame (ICRF) is a realization of the ICRS based on
observations of the radio-emitting stars [257, Ch. 2.2], with the current version being the ICRF2, which
is documented in [147] and can be downloaded from http://hpiers.obspm.fr/icrs-pc/ . When
using visible-light stars, the Hipparcos Celestial Reference Frame (HCRF) is a realization of the ICRF [257,
Ch. 2.2], documentation and data for which can be found at the links in Table 2. However, only the most
distant stars make good points of reference, as their angular displacements in the sky are minimal over time.
For example, Fig. 5 illustrates the predicted motion of the stars near Barnard’s star over a period of 80 years.
Barnard’s star has the highest proper motion in the ICRS, though it is not the angularly closest star next to
the Sun.18

Since the Hipparcos catalog does not have a sufficiently high density of stars for very precise alignment
in a small region, the U.S. Naval Observatory Charge-Coupled Device (CCD) Astrograph Catalog (UCAC)
might often be preferred for high-precision applications [370]. The UCAC (the current version is UCAC4)
is very large and cannot be downloaded, but can be obtained for free on digital versatile disc (DVD) as
described in http://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/ucac . If
one simply wishes to look up the identity of a single star in the sky, the Set of Identifications, Measurements
and Bibliography for Astronomical Data (SIMBAD) database can be used online, accessible through the
Strasbourg Astronomical Data Center (CDS) at http://cdsweb.u-strasbg.fr , and also described
in [358].

Whereas the axes of the BCRS and GCRS can, in practice, be determined from distant stars, the origins
of the respective coordinate systems are more difficult to find. The origin of the BCRS is the barycenter of the
solar system. However, the center of mass of the solar system is not something that can be directly measured
from Earth, rather it must be inferred based on observations of planetary motion. The mathematics behind
such determinations are very complicated due to the necessary inclusion of relativity theory [187, Ch. 4, 5,

17The symbol P, which also marks the x-axis in Fig. 4, represents the zodiacal constellation Aries. In ancient Greek times,
the vernal equinox pointed in the direction of Aries. Nowadays, it points toward the constellation Aquarius due to precession
(precession is discussed in detail in Appendix E). A brief discussion on the history of the constellations and the zodiacal precession
is given in [280].

18Barnard’s star is too dim to see with the naked eye.
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Fig. 5: The right ascension and declination in the ICRS of the stars near Barnard’s star (in red) over a period of 80 years based on
data in the Hipparcos catalog (Barnard’s star is catalog entry 87937). One can see that Barnard’s star has a large proper motion
(the overlapping red circles), whereas the other stars barely move. The declination of the star is increasing as time progresses. The
plot demonstrates how not all stars are poor for use as reference points in defining a non-rotating celestial coordinate system due
to their large motion over the years. The function iauPmsafe in the IAU’s Standards of Fundamental Astronomy (SOFA) library
was used to change the epoch of the data. The points in red are at the epoch of the Hipparcos catalog (1994.25 TT), and 20 Julian
years prior and 20, 40, and 60 Julian years posterior to the epoch of the catalog (a Julian year being precisely 365.25 days).

6]. In practice, precomputed planetary ephemeris tables,19 or programs for efficient ephemeris calculation
based on such tables, are generally used. Given a set of ephemerides and a time, one can relate the position
of the Earth (and a terrestrial observer) to the barycenter.20 The IERS conventions use the development
ephemerides 421 (DE421) of the National Aeronautics and Space Administration (NASA) Jet Propulsion
Laboratory (JPL) as the ephemerides for the ICRS standard [257, Ch. 3]. However, the DE421 ephemerides
have been supplanted by the newer DE430 ephemerides, which can be obtained along with the code to use
them through the site for the Spacecraft Planet Instrument C-matrix Events (SPICE) toolkit listed in Table
2. Note that the BCRS coordinate system uses TCB as its time parameter, whereas the DE421/ DE430
ephemerides use barycentric dynamical time (TDB) as described in [187, Ch. 9.5].

As most individuals designing target-tracking algorithms are concerned with near-Earth objects, the
GCRS and Geocentric Terrestrial Reference System (GTRS)21 are the most relevant coordinate systems.
Both coordinate systems have their origin located at the center of the Earth and use TCG as their timescale,
the rate that a theoretical clock located at the center of the Earth would tick if the mass of the Earth were not
present.

19Ephemerides are tables of the position of celestial bodies as a function of time.
20Rather than relying on Earth-based detections, in the future, spacecraft might make use of pulsars for navigation. In [24], it

was theoretically shown that mean position errors as low as 5km might be possible when using three X-ray pulsars for navigation
in space.

21The GTRS used to be known as the Conventional Terrestrial Reference System (CTRS) [257, Ch. 4.1.4].
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The GCRS is the ECI coordinate system most relevant for target tracking. The GCRS is not a truly
inertial frame of reference, because the origin of the system is in constant acceleration about the Sun. How-
ever, the equivalence principle of general relativity theory [187, Ch. 3.1.3, 3.1.4] states that locally,22 the
effects of gravity are indistinguishable from the effects of an accelerated coordinate system. Consequently,
an observer in free fall would be unable to perform local experiments to tell that he is not in a co-moving
inertial coordinate system. Consequently, the GCRS is often used as an approximately inertial frame for
satellite tracking or for describing the motion of ballistic objects near the Earth. Since the axes of the GCRS
are oriented in the same manner as the ICRS, stars in the form of the ICRF2 or other star catalog can be used
to determine the alignment of the axes.

The GTRS is essentially the same as the GCRS, except it rotates with the Earth. The GTRS is an
ECEF coordinate system for tracking. The orientation of the axes of the GTRS are determined by the ITRS,
which is the GTRS without the time component. The ITRS is realized through the ITRF [257, Ch. 4],
whereby the center of mass and the rotational angle of the Earth are determined using relativistic modeling
and measurements from a network of observation stations through the technique centers of the IERS: the
International Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) Service (IDS),
which uses Doppler techniques for celestial and terrestrial positioning; the International Laser Ranging
Service (ILRS), which analyzes the orbits of the Laser Geodynamics Satellites (LAGEOS); the International
GNSS Service (IGS), which provides a number of services based on global navigation satellites; and the
International Very Long Baseline Interferometry (VLBI) Service for Geodesy and Astrometry (IVS), which
precisely measures the rotation angle of the Earth based on distant quasars. When high-precision conversions
between celestial and terrestrial coordinate systems are necessary, external Earth-orientation parameters as
described in Table 3 are needed. Though research such as reported in [45,229] has provided insight into how
changes in the Earth’s rotation axis are correlated with other observable effects, Earth-orientation parameters
cannot be predicted over long periods of time and must be obtained through observation.

Table 3: Earth-Orientation Parameters Necessary to Precisely Link ECEF and ECI Coordinate Systems
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satellite tracking or for describing the motion of ballistic objects near the Earth. Since the axes of the GCRS
are oriented in the same manner as the ICRS, stars in the form of the ICRF2 or other star catalog can be used
to determine the alignment of the axes.

The GTRS is essentially the same as the GCRS, except it rotates with the Earth. The GTRS is an
ECEF coordinate system for tracking. The orientation of the axes of the GTRS are determined by the ITRS,
which is the GTRS without the time component. The ITRS is realized through the ITRF [246, Ch. 4],
whereby the center of mass and the rotational angle of the Earth are determined using relativistic modeling
and measurements from a network of observation stations through the technique centers of the IERS: the
International Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) Service (IDS),
which uses Doppler techniques for celestial and terrestrial positioning; the International Laser Ranging
Service (ILRS), which analyzes the orbits of the Laser Geodynamics Satellites (LAGEOS); the International
GNSS Service (IGS), which provides a number of services based on global navigation satellites; and the
International Very Long Baseline Interferometry (VLBI) Service for Geodesy and Astrometry (IVS), which
precisely measures the rotation angle of the Earth based on distant quasars. When high-precision conversions
between celestial and terrestrial coordinate systems are necessary, external Earth-orientation parameters as
described in Table 3 are needed. Though research such as reported in [43,220] has provided insight into how
changes in the Earth’s rotation axis are correlated with other observable effects, Earth-orientation parameters
cannot be predicted over long periods of time and must be obtained through observation.

Table 3: Earth-Orientation Parameters Necessary to Precisely Link ECEF and ECI Coordinate Systems
Orientation
Parameter Description

DT DT , tTT ´ tUT1. This quantity varies with changes to the Earth’s rotation rate.
LOD Length of day. The derivative of the DT with respect to TAI; proportional to the Earth’s angular velocity.
dX,dY Celestial pole offsets. Offsets of the modeled rotation axis to the true rotation axis in the GCRS.

Coordinates of the pole. Offsets of the modeled rotation axis of the Earth to the true rotation axis in the ITRSdx,dy (i.e., with respect to the Earth’s crust).

Celestial pole offsets are usually less than 1mas in each coordinate and the coordinates of the pole are
normally less than 600mas in each coordinate as can be ascertained by plotting historical data from the
sources in Table 2. On the other hand, DT is steadily increasing and as of 1 April 2014 was approximately
67.4s according to the U.S. Naval Observatory’s long-term parameters at the source in Table 2. DT is
sometimes defined as a difference with respect to TAI or UTC and/or with a flipped sign. NOTE: As per
the IERS conventions, tide and libration effects should be added to the celestial pole offsets via the
function referenced in Table 2 before use.

Table 2 lists the sources of Earth-orientation parameters used in this report. If one does not need better
than arcsecond precision, then the celestial pole offsets, the coordinates of the pole, and the length of day
(LOD) can be assumed to be zero. On the other hand, a rough estimate of the DT parameter is generally
necessary. A low-precision estimate is to just use the cumulative number of leapseconds added to UTC.
Section 3.2 describes LOD and DT in more detail as the parameters relate to various timescales. Note that
some of the Earth-orientation parameters from the sources in Table 2 have been modified to have short-term

Celestial pole offsets are usually less than 1mas in each coordinate and the coordinates of the pole are normally less than
600mas in each coordinate as can be ascertained by plotting historical data from the sources in Table 2. On the other hand, DT

is steadily increasing and as of 1 April 2014 was approximately 67.4s according to the U.S. Naval Observatory’s long-term
parameters at the source in Table 2. DT is sometimes defined as a difference with respect to TAI or UTC and/or with a flipped

sign. NOTE: As per the IERS conventions, tide and libration effects should be added to the celestial pole offsets via the function
referenced in Table 2 before use.

22That is, in a sufficiently small region such that gravity appears to be uniform.
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Table 2 lists the sources of Earth-orientation parameters used in this report. If one does not need better
than arcsecond precision, then the celestial pole offsets, the coordinates of the pole, and the length of day
(LOD) can be assumed to be zero. On the other hand, a rough estimate of the DT parameter is generally
necessary. A low-precision estimate is to just use the cumulative number of leapseconds added to UTC.
Section 3.2 describes LOD and DT in more detail as the parameters relate to various timescales. Note that
some of the Earth-orientation parameters from the sources in Table 2 have been modified to have short-term
tides removed so as to simplify interpolation. Such tidal effects must be added back using the software listed
in the table.

Figure 6 shows how to convert between celestial and terrestrial coordinate systems using functions from
the International Astronomical Union’s (IAU’s) standards of fundamental astronomy (SOFA) library. The
equinox-based transformations, namely, the J2000.0 dynamical reference system as well as the mean-of-
date (MOD) and true-of-date (TOD) reference systems, are older celestial coordinate systems that must
be taken into consideration when using older celestial data. For example, the U.S. Navy’s astronomical
almanac [70] lists approximations for the locations of the Sun and the Moon in “apparent” coordinates,
which are synonymous with the “true-of-date” reference system. When converting velocity and acceleration
measurements between the ITRS and GCRS coordinate systems, one must account for the rotation rate of
the Earth, which offsets the velocity and introduces additional accelerations due to the Coriolis effect, as
discussed in Appendix A.

Figure 7 shows how to convert from a number of outdated coordinate systems to the ITRS. The True
Equator Mean Equinox (TEME) system is used in the Simplified General Perturbations 4 (SGP4) orbital
propagation algorithm, which is presented with code in [142, 339]. The TEME system is only of modern
interest because the U.S. Strategic Command (USSTRATCOM)/the North American Aerospace Defense
Command (NORAD) publishes/has published23 satellite ephemerides in the form of “two-line element”
(TLE) sets24 that are given in the TEME coordinate system. Figure 7 also shows an older TOD coordinate
system of which one should be aware to avoid confusion with the modern TOD reference system when read-
ing older literature. One should avoid using the coordinate systems in Figure 7 in new tracking algorithms
as they are based on outdated theories.

If one wishes to simply convert between GCRS and ITRS coordinates, then one might also want to
consider the free25 Naval Observatory Vector Astrometry Software (NOVAS) [337], which has the functions
ter2cel and cel2ter to perform the conversions in one step. The NOVAS and SOFA routines for
ECEF/ECI conversion are compared in [233] and are shown to convert directions between the coordinate
systems to within microarcsecond precision of each other. The microarcsecond difference is because the
SOFA code includes some minor corrections to nutation that are absent from the NOVAS code.

The origin of the ITRF2008, which is the latest realization of the ITRS, is not defined as the true center of
gravity of the Earth. Rather, it uses a position averaged over time [257, Ch. 4]. Consequently, deformations
of the Earth due to tides and other effects can shift the true center of gravity with respect to the reference
frame, an effect termed “geocenter motion.” Ground-based stations that form points of reference for satellite
navigation systems to establish their coordinate systems with respect to the ground move relative to the true

23The TLEs are available from USSTRATCOM at http://www.space-track.org (registration required) and for certain
satellites from http://www.celestrak.com/NORAD/elements/ .

24The format of a TLE is described in [71].
25The NOVAS and SOFA libraries are free and, though one should check with a lawyer, it appears that the code can be incorpo-

rated into commercial products with just an acknowledgement to the source.
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center of mass of the Earth due to the motion of the atmosphere, tides, and tectonic motion [363]. Models
for such motion are given in [257, Ch. 7], [364, Ch. 5.4], and [28, Ch. 2.3].

If all receivers have the same Cartesian bias in their locations with respect to the average center of mass
of the Earth, then one can still track orbital debris to a high precision relative to the stations. Consequently,
it makes sense to track satellites not directly in the ITRF coordinate system but in a system defined by
satellites, which orbit the center of mass of the Earth, which, as noted in [363], only varies a few millimeters
from its mean value. As noted in [364, Ch. 5.4], if one localizes a station using GPS satellites, then the
coordinates are consistent with the changing center of mass of the Earth. The use of a dynamic center-of-
mass coordinate system is discussed in [363].

Finally, it should be noted that a number of physical effects must be taken into account when computing
the observed location of an object in the sky. These include delays due to the finite speed of light and parallax
when changing coordinate systems, atmospheric and general relativistic refraction, and special relativistic
aberration. The effects are described in somewhat more detail in Appendix I, where it is detailed how one
can transform planet locations from the coordinate system in which they come (the ICRS of the J2000.0
coordinate system) into observations for an observer near the Earth. Additionally, Appendix J quantifies the
magnitude of the errors introduced by special relativistic aberration when a satellite observes other satellites,
as the effect is often overlooked and can produce significant time-varying measurement biases.
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International Terrestrial

Reference System

J2000.0
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Reference System

MOD
Mean Of Date

Reference System

TOD
True Of Date
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Inputs
Vector in GCRS

rGCRS

Terrestrial Time and UT1
TT1,TT2, UT11,UT12
Polar Motion Coordinates,

xp,yp
Celestial Pole Offsets

dX,dY

Output
Vector in ITRS

rIT RSMultiply by
Bias, Precession-

Nutation Matrix C

Multiply by
Earth Rotation Angle

Matrix R3p�q

Multiply by
Polar Motion
Matrix W

Multiply by
Bias Matrix B

Multiply by
Precession Matrix P

Multiply by
Nutation Matrix N

Multiply by
GAST Matrix R3pGASTq

rCIRS “ CrGCRS

rTIRS “ R3p�qrCIRS

rITRS “ WrTIRS

rJ2000.0 “ BrGCRS rMOD “ PrJ2000.0 rTOD “ NrMOD

1a) Get the CIO locator s and the (x,y)
coordinates of the CIP
iauXys06a(TT1,TT2,&x,&y,&s);

2a) Add in the CIP Offsets
x += dX; y += dY;

3a) Get the GCRS-to-CIRS matrix, C
iauC2ixys(x,y,s,C);

4a) Find the Earth rotation angle for the given UT1 time
� = iauEra00(UT11, UT12);

5a) Form the rotation matrix about the z-axis for the
Earth rotation angle

R3p�q “

»

—–
cosp�q sinp�q 0

´ sinp�q cosp�q 0

0 0 1

fi

�fl

1c) Get the Terrestrial Intermediate
Origin (TIO) locator
sp=iauSp00(TT1,TT2);

2c) Get the polar motion matrix W
iauPom00(xp,yp,sp,W);

3b) Get the equator of date coordinates and the celestial pole offsets»

—–
dX̃

d�

dZ̃

fi

�fl “ PB

»

—–
dX

dY

dZ

fi

�fl d� “ dX̃
sinp�q

4b) Get the corrected nutation matrix
iauPn06(TT1,TT2,�� ` d�,�� ` d�,�,rb,rp,rbp,N,rbpn);

5b) Find Greenwich apparent sidereal time (GAST)
GAST=iauGst06(UT11,UT12,TT1,TT2,NPB);

1b) Get the bias, precession and uncorrected nutation matrices
iauPn06a(TT1,TT2,&��,&��,&�,B,P,rbp,Ñ,rbpn);

2b) Get the pole coordinates and find dZ»

—–
X

Y

Z

fi

�fl “ B1P1Ñ1

»

—–
0

0

1

fi

�fl dZ “ ´ `
X
Z

˘
dX ´ `

Y
Z

˘
dY

6b) Form the rotation matrix about the
z-axis for GAST

R3pGASTq“

»

—–
cospGASTq sinpGASTq 0

´ sinpGASTq cospGASTq 0

0 0 1

fi

�fl

Equinox-Based Transformations

Fig. 7. Transformations between the GCRS, which is an ECI coordinate system and the ITRS, which is an ECEF coordinate system. The modern transformation
uses steps 1a–5a to get to the TIRS through the CIRS. An older, equinox-based method goes through 3 intermediate coordinate systems to get to the TIRS,
using steps 1b through 6b. Steps 1c-2c are used to compute the matrix to go from the TIRS to the ITRS. The functions referenced for some of the
transformations refer to C-function calls in the IAU’s SOFA library when using the IAU 2006/2000A precession-nutation model. Appendix E describes
the origin and difference between precession and notation. The full transformation using the modern celestial intermediate origin (CIO)-based model is
rITRS “ WR3p�qCrGCRS. When using the equinox-based method, the transformation is rITRS “ WR3pGASTqNPBrGCRS. Terrestrial time and universal
time 1 (UT1), which is a measure of the Earth’s rotation angle, are assumed to be given as two-part Julian dates. To convert terrestrial time to universal time,
the function iauTtut1(TT1,TT2,deltaT,&UT11,&UT12); from the IAU’s SOFA library can be used with the Earth-orientation parameter deltaT,
which is the difference between TT and UT1.The polar motion coordinates and the celestial pole offsets are assumed to be given in radians. The inclusion of
the celestial pole offsets in the equinox-based transformation is based on the technique of [175]. Inverse transformations are straightforward as all matrices
are rotation matrices and the transpose of a rotation matrix is its inverse. Combinations of functions for more direction transformation between coordinate
systems are tabulated in [138]. Note: the conversions for UT1 above are IERS-compliant. However, the WGS 84 coordinate system omits certain terms when
computing UT1 for GPS satellite ephemerides [71, Ch. 2.1].

measurements from a network of observation stations through
the technique centers of the IERS: the International Doppler
Orbitography and Radiopositioning Integrated by Satellite
(DORIS) Service (IDS), which uses Doppler techniques for
celestial and terrestrial positioning; the International Laser
Ranging Service (ILRS), which analyses the orbits of the Laser
Geodynamics Satellites (LAGEOS); the International GNSS
Service (IGS), which provides a number of services based
on global navigation satellites; and the International Very
Long Baseline Interferometry (VLBI) Service for Geodesy and
Astrometry (IVS), which carefully measures the rotation angle
of the Earth based on distant quasars. When high-precision
conversions between celestial and terrestrial coordinate sys-
tems are necessary, external Earth-orientation parameters as
described in Table III are needed. Though research such as
[47], [229] has gained insight into how changes in the Earth’s
rotation axis are correlated with other observable effects,

Earth-orientation parameters cannot be predicted over long
periods of time and must be obtained through observation.

Table II lists the sources of Earth-orientation parameters
used in this report. If one does not need better than arcsecond
precision, then the celestial pole offsets, the coordinates of the
pole, and the length of day (LOD) can be assumed to be zero.
On the other hand, a rough estimate of the �T parameter is
generally necessary. A low-precision estimate is to just use
the cumulative number of leapseconds added to UTC. Section
III-B describes LOD and �T in more detail as the parameters
relate to various timescales. Note that some of the Earth-
orientation parameters from the sources in Table II have been
modified to have short-term tides removed so as to simplify
interpolation. Such tidal effects must be added back using the
software listed in the table.

Figure 7 shows how to convert between celestial and terres-
trial coordinate systems using functions from the International

Fig. 6: Transformations between the GCRS, which is an ECI coordinate system, and the ITRS, which is an ECEF coordinate
system. The modern transformation uses steps 1a–5a to get to the TIRS through the CIRS. An older, equinox-based method goes
through three intermediate coordinate systems to get to the TIRS, using steps 1b through 6b. Steps 1c and 2c are used to compute
the matrix to go from the TIRS to the ITRS. The functions referenced for some of the transformations refer to C-function calls in the
IAU’s SOFA library when using the IAU 2006/2000A precession-nutation model. Appendix E describes the origin and difference
between precession and nutation. The full transformation using the modern celestial intermediate origin (CIO)-based model is
rITRS “ WR3pqqCrGCRS. When using the equinox-based method, the transformation is rITRS “ WR3pGASTqNPBrGCRS. Terrestrial
time and universal time 1 (UT1), which is a measure of the Earth’s rotation angle, are assumed to be given as two-part Julian dates.
To convert terrestrial time to universal time, the function iauTtut1(TT1,TT2,deltaT,&UT11,&UT12); from the IAU’s
SOFA library can be used with the Earth-orientation parameter deltaT, which is the difference between TT and UT1. The polar
motion coordinates and the celestial pole offsets are assumed to be given in radians. The inclusion of the celestial pole offsets in
the equinox-based transformation is based on the technique of [175]. Inverse transformations are straightforward as all matrices are
rotation matrices and the transpose of a rotation matrix is its inverse. Combinations of functions for more direct transformations
between coordinate systems are tabulated in [137]. Note: the conversions for UT1 above are IERS-compliant. However, the WGS
84 coordinate system omits certain terms when computing UT1 for GPS satellite ephemerides [69, Ch. 2.1].
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Reference System
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True of Date (Old)
Reference System
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International Terrestrial

Reference System

Inputs
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rT EME , rold
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Terrestrial Time and UT1
TT1,TT2, UT11,UT12
Polar Motion Coordinates,

xp,yp

Multiply by
R3pGMST1982q

Multiply by
W1980

Multiply by
R3pGAST1994q

Get the polar motion matrix W using the IAU 1980 model

W “

»

—–
cospxpq sinpxpq sinpypq sinpxpq cospypq

0 cospypq ´ sinpypq
´ sinpxpq cospxpq sinpypq cospxpq cospypq

fi

�fl

1a) Get Greenwich mean sidereal time using the
IAU 1982 model
GMST1982=iauGmst82(UT11, UT12);
2a) Form the rotation matrix about the z-axis

R3pGMST1982q“

»

—–
cospGMST1982q sinpGMST1982q 0

´ sinpGMST1982q cospGMST1982q 0

0 0 1

fi

�fl

1b) Get Greenwich apparent sidereal time using
the IAU 1982/1984 model
GAST1994=iauGst94(UT11, UT12);
2b) Form the rotation matrix about the z-axis

R3pGAST1994q“

»

—–
cospGAST1994q sinpGAST1994q 0

´ sinpGAST1994q cospGAST1994q 0

0 0 1

fi

�fl

Fig. 8. The transformation between the TEME, which is a non-standard coordinate system used with the two-line element sets published by NORAD for
the old SGP4 orbital propagator, and the ITRS, as ascertained from [341]. Also shown is the transformation between an outdated TOD system, which one
should be aware of to avoid confusion with the more modern TOD in Figure 7. Note that an outdated MOD system (related to the TOD system by a nutation
correction) also exists. Relationships between older and modern coordinate systems are mapped out in [342]. The functions references refer to C-function calls
in the IAU’s SOFA library. The polar motion coordinates are two of the Earth-orientation parameters. Terrestrial time and UT1, assumed given as two-part
Julian dates, and are related as described in the caption to Figure 7. The TEME coordinate system shown is “of date”. A “mean” TEME coordinate system
is also mentioned in the literature, but appears to not be in use.

Astronomical Union’s (IAU’s) standards of fundamental as-
tronomy (SOFA) library. The equinox-based transformations,
namely, the J2000.0 dynamical reference system as well as
the mean-of-date (MOD) and true-of-date (TOD) reference
systems are older celestial coordinate systems that must be
taken into consideration when using older celestial data.
For example, the Navy’s Astronomical Almanac [72] lists
approximations for the locations of the Sun and the Moon
in “apparent” coordinates, which are synonymous with the
“true-of-date” reference system. When converting velocity
and acceleration measurements between the ITRS and GCRS
coordinate systems, one must account for the rotation rate of
the Earth, which offsets the velocity and introduces additional
accelerations due to the Coriolis effect, as discussed in Ap-
pendix A.

Figure 8 shows how to convert from a number of outdated
coordinate systems to the ITRS. The True Equator Mean
Equinox (TEME) system is used in the Simplified General
Perturbations 4 (SGP4) orbital propagation algorithm, which
is presented with code in [143], [340]. The TEME system
is only of modern interest because the U.S. Strategic Com-
mand (USSTRATCOM)/ the North American Aerospace De-
fense Command (NORAD) publish/ have published19 satellite
ephemerides in the form of “two-line element” (TLE) sets20

that are given in the TEME coordinate system. Figure 8 also
shows an older TOD coordinate system of which one should
be aware to avoid confusion with the modern TOD reference
system when reading older literature. one should avoid using
the coordinate systems in Figure 8 in new tracking algorithms
as they are based on outdated theories.

19The TLEs are available from USSTRATCOM at http://www.space-
track.org with an account and for certain satellites from http://
www.celestrak.com/NORAD/elements/ without an account.

20The format of a TLE is described in [74].

If one wishes to just convert between GCRS and ITRS
coordinates, then one might also want to consider the free21

Naval Observatory Vector Astrometry Software (NOVAS)
[339], which has the functions ter2cel and cel2ter to
perform the conversions in one step. The NOVAS and SOFA
routines for ECEF/ECI conversion are compared in [233]
and are shown to convert directions between the coordinate
systems to within microarcsecond precision of each other. The
difference is because the SOFA code includes some minor
corrections to nutation that are absent from the NOVAS code.

The origin of the ITRF2008, which is the latest realization
of the ITRS, is not defined as the true center of gravity of
the Earth. Rather, it uses a position averaged over time [257,
Ch. 4]. Consequently, deformations of the Earth due to tides
and other effects can shift the true center of gravity with
respect to the reference frame, an effect deemed “geocenter
motion.” Ground-based stations that form points of reference
for satellite navigation systems to establish their coordinate
systems with respect to the ground move relative to the
true center of mass of the Earth due to the motion of the
atmosphere, tides, and tectonic motion [362]. Models for such
motion are given in [257, Ch. 7], [363, Ch. 5.4], [29, Ch. 2.3].

If all receivers have the same Cartesian bias in their lo-
cations with respect to the average center of mass of the
Earth, then one can still track space debris to a high precision
relative to the stations. Consequently, it makes sense to track
satellites not directly in the ITRF coordinate system but in a
system defined by satellites, which orbit the center of mass
of the Earth, which, as noted in [362], only varies a few
millimeters from its mean value. As noted in [363, Ch. 5.4],

21The NOVAS and SOFA libraries are free and, though one should check
with a lawyer, it appears that the code can be incorporated into commercial
products with just an acknowledgement to the source.

Fig. 7: The transformation between the TEME, which is a non-standard coordinate system used with the two-line element sets pub-
lished by NORAD for the old SGP4 orbital propagator, and the ITRS, as ascertained from [340]. Also shown is the transformation
between an outdated TOD system, which one should be aware of to avoid confusion with the more modern TOD in Fig. 6. Note
that an outdated MOD system (related to the TOD system by a nutation correction) also exists. Relationships between older and
modern coordinate systems are mapped out in [341]. The function references refer to C-function calls in the IAU’s SOFA library.
The polar motion coordinates are two of the Earth-orientation parameters. Terrestrial time and UT1, assumed given as two-part
Julian dates, are related as described in the caption to Fig. 6. The TEME coordinate system shown is an “of date” system. A “mean”
TEME coordinate system is also mentioned in the literature, but appears to not be in use.
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3. TEMPORAL COORDINATE SYSTEMS

3.1 Defining Basic Temporal Coordinate Systems

The precise timing reference mandated for use by the United States (U.S.) Department of Defense
(DoD) is the U.S. Naval Observatory’s (USNO’s) master clock [338]. However, the U.S. Navy does not
single-handedly determine the time in the United States, but rather works in collaboration with a number
of international organizations to determine standard timescales. Figure 8 maps out part of the complicated
web of international organizations and national laboratories that determine the time around the world. Two
good monographs for understanding the evolution and construction of the standard timescales maintained
by these organizations are [226] and [16].
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Fig. 9. A subset of the web of international organizations and national laboratories that contribute to the definition of international time standards. The BIPM
is the primary organization responsible for determining UTC, though the ITU-R is the primary international legal authority for changes in the standards. The
abbreviations for the labs correspond to those associated with the published deviations of national time scales from UTC and TAI given in ftp://ftp2.bipm.org/
pub/tai/publication/cirt/cirt.309 as of 9 October, 2013. For example, NRL and USNO refer to the Naval Research Laboratory and the U.S. Naval Observatory
in Washington, DC; DLR refers to das Deutsche Zentrum für Luft- und Raumfahrt in Oberpfaffenhofen, Germany, and OP stands for the Observatoire de
Paris in Paris, France. A list of the acronyms meanings is given in Appendix M.

[11]. The details of the methods for transferring time between
stations can vary, but generally involves the use of satellites to
compare times between different laboratories. The realizations
of TAI from different laboratories are combined at the BIMP
to get the échelle atomique libre (EAL).29 The EAL does not
form the official realization of TAI at the BIPM because it
can jump discontinuously as new time differences from the
national laboratories comes in. Thus, a steering algorithm is
used with various frequency standards at the BIPM to obtain
a realization of TAI with no jumps. TT is a smoothed form of
TAI plus a constant offset of 32.184s [256].

While not directly involved in timekeeping, the International
Organization for Standardization (ISO) plays a role in defining
a number of aspects of how times and dates are formatted. For
example, the ISO 8601:2004 standard30 specifies how dates,
times and time intervals should be specified.

Figure 10 outlines the relationship between time scales that
tend to be the most relevant for target-tracking algorithms. The
timescales used internally in existing and developing GNSS,
GPS (United States), Galileo (European Union), GLONASS
(Russia), and BeiDou (China) are very relevant since such
satellites are often used to synchronize clocks. BeiDou time

29No English translation of the scale is in wide use. The term “échelle
atomique libre” means “free atomic scale.”

30The ISO 8601:2004 standard can be purchased for 134 Swiss
Franks (about 147 U.S. dollars) at http://www.iso.org/iso/catalogue
detail?csnumber“40874 . However, it is the opinion of the author that
charging such high prices for fairly basic standards impedes their widespread
adoption, thus hindering the mission of the ISO.

(BDT), GPS time (GPST), and Galileo system time (GST)
are all offset from TAI; the number of leap seconds needed to
obtain UTC is also broadcast by the satellites. The times of the
satellite systems are only notionally related to TAI by the given
offsets as shown; the real times in the satellites can vary but are
kept within certain error tolerances. For example, the BeiDou
interface control document [50] states that BDT will remain
within 100 ns of UTC as given by the National Time Service
Center of the Chinese Academy of Sciences (NTSC), written
as UTC(NTSC). Similarly, GPS time scale is held within 90 ns
of UTC(USNO) [12] though offset by an integer number of
seconds.

TT, TCG, and TCB have very specific definitions in terms
of relativity theory. All are “coordinate” times, which has a
certain meaning in terms of correctness to relativity theory
and that should not be confused with a “coordinated” time,
which is a standard time formed from multiple clocks. Special
relativity theory plays a role in establishing a temporal coordi-
nate system because moving clocks tick more slowly. General
relativity theory also plays a role in standardizing time scales
because clocks can tick at different rates depending upon the
distribution of massive objects around them. Near the Earth,
clocks tick faster at higher altitudes. Figure 11 illustrates how
a clock on a satellite at varying altitudes is biased compared
to TCG. The relativistic bias causes a frequency bias, when
viewed by a TCG observer, that translates into a range-rate bias
when performing detection. Overviews of the role of relativity
theory in time synchronization are given in [17, Ch. 3], [226,

Fig. 8: A subset of the web of international organizations and national laboratories that contribute to the definition of interna-
tional time standards. The BIPM is the primary organization responsible for determining UTC, though the ITU-R is the primary
international legal authority for changes in the standards. The abbreviations for the labs correspond to those associated with the
published deviations of national timescales from UTC and TAI given in ftp://ftp2.bipm.org/pub/tai/publication/
cirt/cirt.309 as of 9 October 2013. For example, NRL and USNO refer to the Naval Research Laboratory and the U.S. Naval
Observatory in Washington, DC; DLR refers to the Deutsche Zentrum für Luft- und Raumfahrt in Oberpfaffenhofen, Germany, and
OP stands for the Observatoire de Paris in Paris, France. A list of the acronym definitions is given in Appendix M.

The International Telecommunication Union (ITU) is an international agency created by the United Na-
tions (UN) that, among other things, coordinates the shared global use of the radio spectrum, manages geo-
stationary satellite orbital positions, and plays a significant role in defining legally binding international time
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standards [23,154].26 Specifically, Working Party 7A (Time Signals and Frequency Standard Emissions) of
Study Group 7 (Science Services) of the Radiocommunication Sector (ITU-R)27 of the ITU is responsible
for work related to time standards. However, the ITU does not solely determine the time internationally.
The Convention of the Metre, an international treaty signed in 1875 and amended in 1921,28 established
the International Bureau of Weights and Measures (BIPM),29 which is currently located in Sèvres, France,
under the authority of the International Committee for Weights and Measures (CIPM), which itself is under
the authority of the General Conference on Weights and Measures (CGPM), which is formed of delegates of
all of the signing countries.30 The CGPM is presided by the president of the French Academy of Sciences.

The BIPM manages a number of international timescales, the most notable being international atomic
time (TAI), terrestrial time, and UTC [10].31 UTC is TAI offset by leap seconds; terrestrial time is something
of a frequency-stabilized version of TAI, but is offset from TAI by a constant number of seconds that has no
relation to leap seconds and does not change. Some disagreement on the legal authority of BIPM over UTC,
compared to the ITU, exists [265]. The U.S. Naval Observatory’s clock maintains a representation of UTC,
which is fed into the BIPM. BIPM combines the results with clocks from many different laboratories around
the world [338]. Abbreviations for participating laboratories are shown in Fig. 8. BIPM then combines the
time measures and feeds the results back to the national laboratories. The representation of UTC kept at a
particular laboratory is given by UTC(k) where k is the abbreviation of a laboratory name [226, Ch. 13.4].
For example, UTC(MIKES) refers to the time maintained by the Center for Metrology and Accreditation32

in Finland and UTC(USNO) refers to the time maintained by the U.S. Naval Observatory in Washington,
DC.

The time feedback process between national laboratories and the BIPM is outlined in [16, Ch. 7.2], [226,
Ch. 13.5], [10]. The details of the methods for transferring time between stations can vary, but generally
involves the use of satellites to compare times between different laboratories. The realizations of TAI from
different laboratories are combined at the BIMP to get the échelle atomique libre (EAL).33 The EAL does not
form the official realization of TAI at the BIPM because it can jump discontinuously as new time differences
from the national laboratories comes in. Thus, a steering algorithm is used with various frequency standards
at the BIPM to obtain a realization of TAI with no jumps. TT is a smoothed form of TAI plus a constant
offset of 32.184s [256].

While not directly involved in timekeeping, the International Organization for Standardization (ISO)
plays a role in defining a number of aspects of how times and dates are formatted. For example, the ISO
8601:2004 standard34 specifies how dates, times, and time intervals should be specified.

26Many of the ITU’s time and frequency standards can be downloaded free at http://www.itu.int/rec/R-REC-TF/ .
27The ITU-R was formerly known as the International Radio Consultative Committee (CCIR).
28The text of the amended Convention of the Metre is available (in French) at http://www.bipm.org/utils/en/pdf/

metre convention.pdf .
29Many of the acronyms do not correspond to the words that they are abbreviating, because the acronyms come from French.

Such acronyms are tabulated in Appendix M.
30As listed at http://www.bipm.org/en/convention/member states/ , the United States is a member state, having

signed in 1878.
31Greenwich mean time (GMT) is an obsolete time standard that came before UTC and that no longer exists. Presently, the term

GMT is generally used to mean UTC, especially in the United Kingdom.
32The acronym MIKES comes from Mittatekniikan keskus in Finnish.
33No English translation of the scale’s name is in wide use. The term “échelle atomique libre” means “free atomic scale.”
34The ISO 8601:2004 standard can be purchased for 134 Swiss francs (about 147 U.S. dollars) at http://www.iso.org/

iso/catalogue detail?csnumber“40874 . It is the opinion of the author that charging such high prices for fairly basic
standards impedes their widespread adoption, thus hindering the mission of the ISO.
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Figure 9 outlines the relationship between timescales that tend to be the most relevant for target-tracking
algorithms. The timescales used internally in existing and developing GNSS, GPS (United States), Galileo
(European Union), GLONASS (Russia), and BeiDou (China) are particularly relevant since such satellites
are often used to synchronize clocks. BeiDou time (BDT), GPS time (GPST), and Galileo system time
(GST) are all offset from TAI; the number of leap seconds needed to obtain UTC is also broadcast by the
satellites. The times of the satellite systems are only notionally related to TAI by the given offsets as shown;
the real times in the satellites can vary but are kept within certain error tolerances. For example, the BeiDou
interface control document [48] states that BDT will remain within 100ns of UTC as given by the National
Time Service Center of the Chinese Academy of Sciences (NTSC), written as UTC(NTSC). Similarly, GPS
timescale is held within 90ns of UTC(USNO) [11] though offset by an integer number of seconds.
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if one localizes their station using GPS satellites, then the
coordinates are consistent with the changing center of mass
of the Earth. Indeed, the use of a dynamic center-of-mass
coordinate system is discussed in [362].

Finally, it should be noted that a number of physical effects
must be taken into account when computing the observed
location of an object in the sky. These include delays due to the
finite speed of light as well as parallax when changing coor-
dinate systems, atmospheric and general relativistic refraction,
and special relativistic aberration. The effects are described in
somewhat more detail in Appendix I, where it is detailed how
one can transform planet locations from the coordinate system
in which they come (the ICRS of the J2000.0 coordinate
system) into observations for an observer near the Earth.
Additionally, Appendix J quantifies the magnitude of the errors
introduced by special relativistic aberration when a satellite
observes other satellites, as the effect is often overlooked and
can produce significant time-varying measurement biases.

III. TEMPORAL COORDINATE SYSTEMS

A. Defining Basic Temporal Coordinate Systems

The precise timing reference mandated for use by the United
States (U.S.) Department of Defense (DoD) is the U.S. Naval
Observatory’s (USNO’s) master clock [245]. However, the
U.S. Navy does not single-handedly determine the time in
the United States, but rather works in collaboration with a
number of international organizations to determine standard
time scales. Figure 9 maps out part of the complicated web of
international organizations and national laboratories that de-
termine the time around the world. Two good monographs for
understanding the evolution and construction of the standard
time scales maintained by these organizations are [226] and
[17].

The International Telecommunication Union (ITU) is an
international agency created by the United Nations (UN) that,
among other things, coordinates the shared global use of
the radio spectrum, manages geostationary satellite orbital
positions, and plays a significant role in defining legally-
binding international time standards [24], [154].22 Specifically,
Working Party 7A (Time Signals and Frequency Standard
Emissions) of Study Group 7 (Science Services) of the Ra-
diocommunication Sector (ITU-R)23 of the ITU is responsible
for work related to time standards. However, the ITU does not
solely determine the time internationally. The Convention of
the Metre, an international treaty signed in 1875 and amended
in 1921,24 established the International Bureau of Weights
and Measures (BIPM),25 which is currently located in Sèvres
France, under the authority of the International Committee
for Weights and Measures (CIPM), which itself is under the

22For example, many of the ITU’s time and frequency standards can be
downloaded for free at http://www.itu.int/rec/R-REC-TF/ .

23The ITU-R was formerly known as the International Radio Consultative
Committee (CCIR).

24The text of the amended Convention of the Metre is available (in French)
at http://www.bipm.org/utils/en/pdf/metre convention.pdf .

25Many of the acronyms do not correspond to the words that they are
abbreviating, because the acronyms come from French. Such acronyms are
tabulated in Appendix M.
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Fig. 10. The relationship between major modern timescales. Functions in
the IAU’s SOFA library to perform the transformations are indicated, when
available. The Earth-orientation parameter �T must be obtained from an
outside source to compute UT1 (See Table II). The conversion from TT
to TDB requires UT1 as an additional input to iauDtdb. TDB is a time
scaled used by NASA JPL that does not use the SI second as its based unit,
though its relativistic correctness is the same as TCB [313]. TDB is also
sometimes referred to as ephemeris time (EF). TT is not precisely an offset
form of TAI; it is computed by smoothing TAI over a period of time. The
U.S. Navy’s Astronomical Almanac uses TT for expressing ephemerides [72,
Ch. B]. GPST, GST, and BDT are broadcast with leap seconds information
and can thus be easily transformed into UTC. GLONASS time matches the
UTC offset for the time zone in which Moscow, Russia is located.

authority of the General Conference on Weights and Measures
(CGPM), which is formed of delegates of all of the signing
countries.26 The CGPM is presided by the president of the
French Academy of Sciences.

The BIPM manages a number of international time scales,
the most notable being international atomic time (TAI), ter-
restrial time, and UTC [11].27 UTC is TAI offset by leap
seconds; terrestrial time is something of a frequency-stabilized
version of TAI, but is offset from TAI by a constant number
of seconds that has no relation to leap seconds and does
not change. Some disagreement on the legal authority of
BIPM over UTC, compared to the ITU, exists [265]. The
U.S. Naval Observatory’s clock maintains a representation of
UTC, which is fed into the BIPM. BIPM combines the results
with clocks from many different laboratories around the world
[245]. Abbreviations for participating laboratories are shown
in Fig. 9. BIPM then combines the time measures and feeds the
results back to the national laboratories. The representation of
UTC kept at a particular laboratory is given by UTC(k) where
k is the abbreviation of a laboratory name [226, Ch. 13.4].
For example, UTC(MIKES) refers to the time maintained by
the Center for Metrology and Accreditation28 in Finland and
UTC(USNO) refers to the time maintained by the U.S. Naval
Observatory in Washington, DC.

The time feedback process between national laboratories
and the BIPM is outlined in [17, Ch. 7.2], [226, Ch. 13.5],

26As listed at http://www.bipm.org/en/convention/member states/ the
United States is a member state having signed in 1878.

27Greenwich mean time (GMT) is an obsolete time standard that came
before UTC and that no longer exists. Nowadays, the term GMT is generally
used to mean UTC, especially in the United Kingdom.

28The acronym MIKES comes from Mittatekniikan keskus in Finnish.

Fig. 9: The relationship between major modern timescales. Functions in the IAU’s SOFA library to perform the transformations are
indicated, when available. The Earth-orientation parameter DT must be obtained from an outside source to compute UT1 (see Table
2). The conversion from TT to TDB requires UT1 as an additional input to iauDtdb. TDB is a timescale used by NASA JPL that
does not use the SI second as its base unit, though its relativistic correctness is the same as TCB [313]. TDB is also sometimes
referred to as ephemeris time (ET). TT is not precisely an offset form of TAI; it is computed by smoothing TAI over a period of
time. The U.S. Navy’s astronomical almanac uses TT for expressing ephemerides [70, Ch. B]. GPST, GST, and BDT are broadcast
with leap seconds information and can thus be easily transformed into UTC. GLONASS time matches the UTC offset for the time
zone in which Moscow, Russia is located.

TT, TCG, and TCB have very specific definitions in terms of relativity theory. All are “coordinate” times,
which has a certain meaning in terms of correctness to relativity theory and that should not be confused with
a “coordinated” time, which is a standard time formed from multiple clocks. Special relativity theory plays a
role in establishing a temporal coordinate system because moving clocks tick more slowly. General relativity
theory also plays a role in standardizing timescales because clocks can tick at different rates depending upon
the distribution of massive objects around them. Near the Earth, clocks tick faster at higher altitudes. Figure
10 illustrates how a clock on a satellite at varying altitudes is biased compared to TCG. The relativistic
bias causes a frequency bias, when viewed by a TCG observer, that translates into a range-rate bias when
performing detection. Overviews of the role of relativity theory in time synchronization are given in [16, Ch.
3] [226, Ch. 7,8] and a good overview of basic relativistic physics and its relation to standard coordinate
systems and dynamic models is given in [187].
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Fig. 10: Time dilation resulting from general and special relativity cause clocks on satellites to become biased compared to TCG,
as plotted. The plots are relative to a TCG observer because the rate difference of a clock on a satellite and an (inertial) geocentric
observer is time-invariant. With respect to an observer on the ground or another satellite, however, special relativity dictates that
the bias varies with time since the relative velocities of the objects vary with time. Figure (a) is the time on a satellite clock minus
the TCG time after one TCG day. A clock offset causes an offset in frequency. Figure (b) assumes that the satellite broadcasts a
2GHz signal. The figures show the clock bias and the bias in the range-rate measurement due to ignoring relativity. The altitudes
range from 100km to 36,000km, which is just above the altitude of a geosynchronous equatorial orbit. Appendix C provides more
details in how the plots were computed.

TT is based on the rate that a clock located on the geoid, a hypothetical surface of equal gravitational
potential of the rotating Earth defining mean sea level (MSL),35 would tick (Section 4 discusses the geoid
in more detail). Precise clocks at different altitudes on the Earth must correct for altitude to remain syn-
chronized to TT (or TAI/UTC) when reporting to the BIPM. Measurement models including the effects of
relativity on radar and optical measurements have been previously studied [158, 184, 323] [187, Ch. 7]36

and must often be considered when designing high-precision tracking algorithms for objects in space. Rel-
ativity theory affects more than just the rate at which different clocks in a detection system tick. Indeed,
as explained in [145], special relativity can paradoxically cause non-collocated events that are simultane-
ous in one frame of reference to not be simultaneous in another frame of reference. Relativist corrections
are essential for the accurate operation of GPS receivers [13] [364, Ch. 5.3]. For example, GPS signals
are broadcast on 20.46MHz wide bands at 1575.42MHz and 1227.6MHz carrier frequencies, which are
derived from a common 10.46MHz source [11, Sec. 3.3.1.1]. The source and carrier frequencies are only
nominally defined for an observer on the ground. The true rate of the driving clock inside the satellite is
10.22999999543MHz, whereby the 10.46MHz comes from using special relativity to deal with relativistic

35Note that the both the gravitational potential of the geoid as well as the handling of the permanent tide must be provided to
have a unique definition of MSL. The necessity of specifying the permanent tide model is often overlooked and is discussed in more
detail in Section 6.

36Those interested in visualizing the effects of special relativity alone to gain a more intuitive understanding might have fun
playing with some of the games created as part of the Massachusetts Institute of Technology’s Open Relativity project [230].
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time dilation relative to an average ground-based observer. Thus, satellite-based observers trying to use GPS
need to make different adjustments.

TCG is a timescale defined as the rate a clock at the center of mass of the Earth would tick if the Earth
were not present (and there were no Earth-rotation effects). Similarly TCB is a timescale defined as the rate
a clock at the center of mass of the solar system would tick if all of the massive objects in the solar system
were removed. TDB is a timescale similar to TCB that has been linearly transformed to remain closer,
on average, to TT than TCB does. No clock directly measures TCG or TCB. Such coordinate timescales
must be computed rather than measured.37 When tracking targets in orbit around the Earth, TCG is a
good approximation to a fully relativistically correct timescale to use in the tracker, whereas when tracking
objects far in the solar system (or for very high-precision tracking of targets near the Earth), TCB is often
more precise.

Coordinate timescales stand in contrast to proper timescales in relativity theory. Proper time is the
time that would be read by a clock that is collocated with an observer [187, Ch. 2.2.4.6] [226, Ch. 7.4].
Observers moving at different relative velocities will not agree on the simultaneity of events. This comes up
when using high-precision ephemerides. For example, the NASA SPICE toolkit, which can be downloaded
from the link in Table 2, can be used with various sets of ephemerides to determine the location of the planets
at a particular time. The time unit used for the ephemerides is TDB, which is a barycentric coordinate time
linearly related to TCB. One could use the function iauDtdb in the IAU’s SOFA library to convert from
TT at the location of an Earthbound observer to TDB. The function iauDtdb uses the algorithm of [84] and
requires the geocentric location of the observer because the Earth rotates and observers at different locations
experience different proper times, meaning that the relative offsets between their clocks and TCB or TDB
differ. Coordinate time is any unambiguous reference frame with respect to which various proper timescales
can be compared. The fact that rotation is included in the definition of TT means that the definition of
the relevant geoid includes the effects of general relativity (from gravity) and special relativity (due to
the motion). Such a definition of the geoid including the rotation of the Earth is present in the WGS 84
standard [69], which is the coordinate system underlying GPS.

The link between time, motion, and position means that in high-precision applications, temporal and
positional coordinate systems cannot be treated separately. This connection between time and space is one
of the many reasons why Fig. 8 includes the IERS as well as the IAU, the IGS, and the International
Union of Geodesy and Geophysics (IUGG), who all play important roles in the development of interna-
tional positional coordinate systems, which are discussed in Section 2. Many such organizations are united
through the ICSU. Despite its widespread standardization, UTC itself is not directly appropriate for use in
target-tracking algorithms because it is a discontinuous timescale. UTC is occasionally adjusted with “leap
seconds” to keep it relatively in synch with a timescale called Universal Time 1 (UT1), which is a timescale
based on the rotation angle of the Earth with respect to distant quasars in space [226, Ch. 2.7, 14, 17] and
to the location of a theoretical mean Sun. The distant quasars define the ICRF set by the IERS [257, Ch.
2.2], which is discussed in more detail in Section 2. Note that the current version (G1762) of the WGS 84
standard [69, Ch. 2.1] is not fully consistent with the IERS conventions, because it omits librations and
polar motion when computing UT1. This matters when using government-provided precise ephemeris data

37It would be nice to have a universal timescale that can be directly measured anywhere in the universe regardless of the observer’s
motion and position in gravitational fields. However, there do not appear to be any physical processes that can be used to define
such a scale. In other words “stardates,” as used in the Star Trek television series, are going to have to remain fictional for the time
being.
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for GPS satellites. All simulations in this present report were done using an IERS-compliant routine for
computing UT1.

Figure 11 illustrates the relationship between common physical, solar, and sidereal timescales. The
sidereal timescales are defined only in terms of the rotational position of the Earth with respect to the vernal
equinox and thus are not directly coupled to the position of the Sun on a daily basis. Note that the position of
the vernal equinox with respect to distant stars slowly moves, so a sidereal day does not put an observer back
in the same position with respect to the ICRS.38 Figure 6 in Section 2 makes use of the sidereal timescales
when considering equinox-based transformations, which, in light of the modern IERS conventions, are
largely obsolete. Local apparent solar time (LAT) can be viewed as the time that one would measure based
solely on the location of the Sun in the sky at a particular longitude. Note that as documented in [176], the
East longitudes used for obtaining local mean sidereal time and local apparent sidereal time must be in the
TIRS. In [224, Sec. 4.2-4.5], UT1 is presented as a definition of “Greenwich mean solar time” and is local
mean solar time at 0˝ longitude.39 As UT1 is defined in terms of a rotation in the TIRS, one can assume that
the observer’s East longitude for obtaining local mean solar time (LMT) must also be in the TIRS.
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Fig. 12. The relationship between the modern physical time, TT, the modern
solar time, UT1, and older solar and sidereal timescales. Functions in the
IAU’s SOFA library to perform the transformations are indicated, when
available, though the inputs do not necessarily match the flow chart. For actual
times, the East longitude of the observer is added under the convention that 2�
radians (360˝) is equivalent to 24 hours (86400 seconds). Note that the East
longitude is given in TIRS coordinates, not in ITRS coordinates, sidereal times
are often given in radians and LMT and LAT are often given in hours (0-24)
and are thus periodic. The Earth-orientation parameter �T must be obtained
from an outside source to compute UT1 (See Table II). The 12 hour offset
for LMT is because LMT and LAT days, when expressed as angles/ hours
start at midnight, not noon as in UT1. The equation of time must be obtained
from ephemerides. It is tabulated in the Navy’s Astronomical Almanac [72,
Ch. C].

particular time. The time unit used for the ephemerides is
TDB, which is a barycentric coordinate time linearly related
to TCB. One could use the function iauDtdb in the IAU’s
SOFA library to convert from TT at the location of an
Earthbound observer to TDB. The function iauDtdb uses the
algorithm of [85] and requires the geocentric location of the
observer because the Earth rotates and observers at different
locations experience different proper times, meaning that the
relative offsets between their clocks and TCB or TDB differ.
Coordinate time is any unambiguous reference frame with
respect to which various proper time scales can be compared.
The fact that rotation is included in the definition of TT means
that the definition of the relevant geoid includes the effects
of general relativity (from gravity) and special relativity (due
to the motion). Such a definition of the geoid including the
rotation of the Earth is present in the WGS 84 standard [71],
which is the coordinate system underlying GPS.

The link between time, motion, and position means that in
high-precision applications, temporal and positional coordinate
systems cannot be treated separately. This connection between
time and space is one of the many reasons why Fig. 9 includes
the IERS as well as the IAU, the IGS, and the IUGG, who all
play important roles in the development of international posi-
tional coordinate systems, which are discussed in Section II.
Many such organizations are united through the ICSU. Despite
its widespread standardization of, UTC itself is not directly
appropriate for use in target-tracking algorithms because it is
a discontinuous time scale. UTC is occasionally adjusted with
“leap seconds” to keep it relatively in synch with a time scale
called Universal Time 1 (UT1), which is a time scale based on
the rotation angle of the Earth with respect to distant quasars in
space [226, Ch. 2.7, 14, 17] and to the location of a theoretical
mean Sun. The distant quasars define the ICRF set by the IERS

[257, Ch. 2.2], which is discussed in more detail in Section II.
Note that the current version (G1762) of the WGS 84 standard
[71, Ch. 2.1] is not fully consistent with the IERS conventions,
because it omits librations and polar motion when computing
UT1. This matters when using government-provided precise
ephemeris data for GPS satellites. All simulations in this paper
were done using an IERS-compliant routine for computing
UT1.

Figure 12 illustrates the relationship between common phys-
ical, solar, and sidereal timescales. The sidereal timescales
are defined only in terms of the rotational position of the
Earth with respect to the vernal equinox and thus are not
directly coupled to the position of the Sun on a daily basis.
Note that the position of the vernal equinox with respect to
distant stars slowly moves, so a sidereal day does not put an
observer back in the same position with respect to the ICRS34

Figure 7 in Section II makes use of the sidereal timescales
when considering equinox-based transformations, which, in
light of the modern IERS conventions, are largely obsolete.
Local apparent solar time (LAT) can be viewed as the time
that one would measure based solely on the location of the Sun
in the sky at a particular longitude. Note that as documented
in [176] the East longitudes used for obtaining local mean
sidereal time, local apparent sidereal time must be in the TIRS.
In [224, Sec. 4.2-4.5], UT1 is presented as a definition of
“Greenwich mean solar time” and is local mean solar time at
0˝ longitude.35 As UT1 is defined in terms of a rotation in the
TIRS, one can assume that the observer’s East longitude for
obtaining local mean solar time (LMT) must also be in the
TIRS.

LAT is not exactly the time one would read from a sundial,
but it is close. One can find LAT (as an angle) by finding
the local hour angle of the Sun in the TIRS and adding
� radians. The local hour angle of the Sun is found by
converting the direction of the Sun in the TIRS, accounting for
aberration and light-time but not for atmospheric refraction,
into spherical coordinates. The negative azimuth angle in
spherical coordinates is the hour angle. The local hour angle
is the hour angle of the Sun plus the East longitude of the
receiver in the TIRS (not the ITRS).

When a leap second is added, it occurs in all time zones
around the world simultaneously (time zones are just offset
from UTC by various increments). Leap seconds are added in
the final minute of a particular day. That is, a minute might
have 59 s or 61 s rather than 60 s. UTC cannot be set to always
coincide with UT1 because UTC is meant to tick at a constant
rate (minus intercalary (leap) seconds added to keep it in
synch with UT1), whereas the duration of a day in UT1 varies
because the instantaneous angular velocity of the Earth itself

34The term for one rotation with respect to the ICRS is a “stellar day.” The
IERS lists a stellar day as 86164.098903691 s, in comparison to sidereal day
duration of 86164.09053083288 s and a conventional solar day (without leap
seconds) of precisely 86400 s. A list of such constants is available from the
IERS at http://hpiers.obspm.fr/eop-pc/models/constants.html .

35Days in UT1 begin at noon, not at midnight. Figure 12 has LAT and
LMT offset from UT1 by 12 hours so that a zero hour of the day corresponds
to midnight, not noon. This is the standard convention. However, if LAT and
LMT are represented as a full Julian dates, it makes more sense to not add
the 12 hours as the other common date formats (UTC, UT1, TAI, and TT)
all reference Julian dates from noon, keeping with older conventions.

Fig. 11: The relationship between the modern physical time, TT, the modern solar time, UT1, and older solar and sidereal timescales.
Functions in the IAU’s SOFA library to perform the transformations are indicated, when available, though the inputs do not nec-
essarily match the flow chart. For actual times, the East longitude of the observer is added under the convention that 2p radians
(360˝) is equivalent to 24 hours (86,400 seconds). Note that the East longitude is given in TIRS coordinates, not in ITRS coor-
dinates, sidereal times are often given in radians, and LMT and LAT are often given in hours (0 ´ 24) and are thus periodic. The
Earth-orientation parameter DT must be obtained from an outside source to compute UT1 (see Table 2). The 12 hour offset for
LMT is because LMT and LAT days, when expressed as angles/hours start at midnight, not noon as in UT1. The equation of time
must be obtained from ephemerides. It is tabulated in the Navy’s astronomical almanac [70, Ch. C].

38The term for one rotation with respect to the ICRS is a “stellar day.” The IERS lists a stellar day as 86164.098903691s, in com-
parison to sidereal day duration of 86164.09053083288s and a conventional solar day (without leap seconds) of precisely 86,400s.
A list of such constants is available from the IERS at http://hpiers.obspm.fr/eop-pc/models/constants.html .

39Days in UT1 begin at noon, not at midnight. Figure 11 has LAT and LMT offset from UT1 by 12 hours so that a zero hour of
the day corresponds to midnight, not noon. This is the standard convention. However, if LAT and LMT are represented as a full
Julian date, it makes more sense to not add the 12 hours, as the other common date formats (UTC, UT1, TAI, and TT) all reference
Julian dates from noon, keeping with older conventions.
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The definition of LAT is based on the “apparent” location of the Sun. However, as defined in [332,
Appen. C ], apparent places in astronomy take into account light-time and stellar aberration, but do not
consider atmospheric refraction. LAT is not exactly the time one would read from a sundial, but it is close.
One can find LAT (as an angle) by finding the local hour angle of the Sun in the TIRS and adding p radians.
The local hour angle of the Sun is found by converting the direction of the Sun in the TIRS, accounting
for aberration and light-time but not for atmospheric refraction, into spherical coordinates. The negative
azimuth angle in spherical coordinates is the hour angle. The local hour angle is the hour angle of the Sun
plus the East longitude of the receiver in the TIRS (not the ITRS). Conversion to a time of day occurs with
the rule that 24 hours is 2p radians.

When a leap second is added, it occurs in all time zones around the world simultaneously (time zones
are just offset from UTC by various increments). Leap seconds are added in the final minute of a particular
day. That is, a minute might have 59s or 61s rather than 60s. UTC cannot be set to always coincide with
UT1 because UTC is meant to tick at a constant rate (minus intercalary [leap] seconds added to keep it in
synch with UT1), whereas the duration of a day in UT1 varies because the instantaneous angular velocity of
the Earth itself varies as a function of the positions of the Moon and other bodies in the solar system, as well
as due to processes internal to the Earth. For example, the length of the day is estimated to have increased
between 2.7 µs and 6.8 µs as a result of the 2004 Sumatra earthquake [114].

The accuracy and stability of the timescale needed in different parts of a multistatic tracking system
vary. For updating target tracks, a relatively high degree of synchrony between sensors is required. In most
cases, synchronizing the system to the clocks on the United States’ GPS satellites will provide sufficient
accuracy for tracker updates. For example, consider the case of accurately tracking a meteor. In [218], it
was noted that very small meteors (with masses on the order of micrograms) detected by the Arecibo radar
were observed traveling at speeds up to 63km{s («Mach185), which is an order of magnitude faster than
any aircraft or manmade satellite. In [226, Ch. 16.3], it is noted that timing accuracies as low as 20ns
can be obtained using GPS satellites and timing accuracies accuracies below 1ns can be achieved using
two-way satellite time and frequency transfer techniques. For an object traveling 63km{s, a synchronization
error of 20ns corresponds to an offset of 1.3mm in the position of the object (the amount the object moves
over 20 ns); a timing error of 1ns is a position offset of just 63 µm. In both instances the bias is probably
significantly smaller than the precision of the detecting radar.

When performing detection, the clock in the receiver needs to be very stable to measure Doppler during
the measurement period. Frequency stability during such a short interval stands in contrast to the long-
term time accuracy that was just discussed. In a bistatic system, frequency stability means that the clocks
across sensors should be highly syntonous (have high short-term stability). For example, when transmitting
a signal at a 2GHz carrier, an offset in the frequency of the transmitting and receiving clocks of just 1.05Hz
is the same frequency offset due to the Doppler shift of a target moving 16cm{s. Small Doppler biases
also become important in Doppler-only localization applications such as in the IDS, which is a network of
ground-based transmitters used by satellites for orbit determination.

When a time-synchronization accuracy only on the order of a few milliseconds is needed, as might be the
case in an aviation radar network, then network time protocol (NTP) servers can be used for clock synchro-
nization. Modern operating systems typically come with the software necessary to synchronize the clocks in
computers to NTP servers over the internet. Many open-access servers, such as time-b.timefreq.bldrdoc.gov
at the National Institute of Standards and Technology (NIST) in Boulder, Colorado, USA or ntp.neu.edu.cn
at Northeastern University, Shenyang, Liaoning, China are available. Modern operating systems including
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Mac OS X, Windows, and many versions of Unix and Linux come with software for querying network time
servers.

In many applications the relative offset between two highly precise clocks is more important than the
synchronization of either clock to an external timescale. For example, utilizing general relativity theory, a
pair of modern atomic clocks have achieved sufficient accuracy that local variations in the geoid height can
be measured to an accuracy of 1cm (using general relativity theory) by comparing the rates of clocks in two
different locations using a fiber-optic cable connection [32].

Table 4 lists a number of resources related to time transfer. Precise synchronization of a network of
clocks over a wide area using global satellite systems is a complicated process. Basic training materials
on the problem can be downloaded from the BIPM at the web site listed in Table 4. In practice, times and
positioning obtained using GPS satellites can be improved with an augmented system. The ephemeris data
(information on the orbital trajectories of the satellites) and clock corrections broadcast by each satellite are
limited in precision. Users with internet connections can obtain more accurate data using the services of
the IGS or the Global Differential GPS (GDGPS) System of the NASA JPL, where sub-nanosecond timing
accuracies are possible. However, the GDGPS service is not guaranteed to be free. The standard for NTP
communications is specified by the Internet Engineering Task Force through a number of standards listed in
Table 4.

Table 4: Time Transfer Resources 17

Description Internet Address
BIPM training materials for time standards and time
transfer http://www.bipm.org/ws/AllowedDocuments.jsp?ws“TAI TRAINING

BIPM publications, including current biases of
national laboratories’ clocks from TAI and UTC http://www.bipm.org/en/publications/scientif/tfg.html

ITU standards related to time transfer http://www.itu.int/rec/R-REC-TF
GPSTk, Code for GPS localization and synchronization http://www.gpstk.org/
Source code for GPS algorithms published in GPS
Solutions Quarterly http://www.ngs.noaa.gov/gps-toolbox/

Public network time protocol server lists http://support.ntp.org/bin/view/Servers/
https://tools.ietf.org/html/rfc5905

Internet Engineering Task Force standards related to the http://tools.ietf.org/html/rfc5906
network time protocol http://tools.ietf.org/html/rfc5907

http://tools.ietf.org/html/rfc5908
Real-Time Products of the IGS http://rts.igs.org/access/
Information on the GDGPS System http://www.gdgps.net/
Free online service for refining estimates from raw GPS http://www.nrcan.gc.ca/earth-sciences/products-services/land-geodetic-survey/
data in Canada gps-processing/online-global-gps-processing/5415

TABLE IV
RESOURCES RELATED TO TIME TRANSFER. PARTS OF THE GDGPS SERVICE ARE CONSIDERED THE INTELLECTUAL PROPERTY OF INSTITUTIONS SUCH
AS THE CALIFORNIA INSTITUTE OF TECHNOLOGY AND ARE NOT GUARANTEED TO BE FREE. HOWEVER, EVERYTHING ELSE LISTED IS FREE AND THE
REAL-TIME PRODUCTS OF THE IGS ARE A FREE ALTERNATIVE TO THE GDGPS SERVICE. CURRENT VERSIONS OF MAC OS X, WINDOWS, AND MANY

VERSIONS OF LINUX COME WITH SOFTWARE FOR SYNCHRONIZATION TO AN NTP SERVER.
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Fig. 13. Plots of (a) the �T Earth-orientation parameter as well as (b) the difference between UTC and UT1, which is discontinuous due to the inclusion
of leapseconds in UTC. The data was taken from the U.S. Naval Observatory’s finals2000A.data file available at the link in Table II. Interpolation
between points, including the addition of tidal terms, was performed using Matlab code based off of interp.f that the IERS provides at the link in Table
II. Though the UTC day duration is not quite uniform due to the presence of leapseconds, the scale of the chart is such that it is not noticeable.

The �T Earth-orientation parameter is directly linked to
the LOD parameter. The LOD parameter is defined to be

LOD , ´dptUT1 ´ tTAIq
dtTAI

. (1)

Consequently by integrating over the LOD parameter in TAI,
one obtains a version of �T in TAI time. Since TAI tics at the
same rate as TT, one can replace TAI with TT in (1) without
changing the value of LOD for an equivalent time in TT. The
LOD parameter is related to the rotation rate of the Earth as

� “ �N

ˆ
1 ´ LOD

Tday, TAI

˙
(2)

where � is the instantaneous angular velocity of the Earth’s
rotation in radians per second, Tday, TAI “ 86400 s is the nom-

inal length of one day in TAI, and �N “ 72921151.467064 ˆ
10´12 rad

s is the nominal angular velocity of the Earth at epoch
1820 based on the duration of the mean solar day being
Tday, TAI. Note that �NTday, TAI ‰ 2�, because the Earth’s
rotation around the Sun means that the Earth must rotate
more than 2� radians between noon on one day and noon
(as defined by the peak height of the Sun in the sky) the
next day. The specific numerical value used is from http:
//hpiers.obspm.fr/eop-pc/earthor/ut1lod/UT1.html . Though a
very complicated explicit formula for LOD as a function
of various celestial parameters has been derived [351], no
accurate long-term predictions exist.

Parts of the GDGPS service are considered the intellectual property of institutions such as the California Institute of Technology
and are not guaranteed to be free. However, everything else listed is free and the real-time products of the IGS are a free

alternative to the GDGPS service. Current versions of Mac OS X, Windows, and many versions of Linux come with software for
synchronization to an NTP server.

3.2 Time and Earth-Orientation Parameters

The differences tUT1 ´ tTT, tUT1 ´ tTAI, tUT1 ´ tTAI, or those quantities with the signs flipped are various
definitions of the DT Earth-orientation parameter mentioned in Section 2. Being able to relate one’s local
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time to UT1 is very important for localizing oneself using the stars and for converting measurements from
Earthbound observers into the GCRS or ICRS, the coordinate systems in which one is most likely to track
satellites and celestial objects. For example, the maximum allowable offset between UTC and UT1 is
0.9s [23]. Using the rotational velocity of the Earth of the WGS 84 coordinate system (given in Table 5
in Section 4.2), the maximum allowable time offset corresponds to an angular bias of 13.527 arcseconds.
Considering an equatorial observer, using the WGS 84 Earth radius from the same table, the same angular
bias when localizing oneself using stars corresponds to an offset on the surface of the Earth of 418.591m.40

Figure 12 shows a plot of DT over time and a plot showing how UTC has been updated to keep in
synch with UT1. In [208], a description of how DT is estimated based on observational data is provided.
Though a number of papers try to fit curves to historical DT observations for purposes of interpolation and
prediction [118,156,157,238], the models are not accurate for long-term predictions and observational data
must be used. Based upon past prediction methods, the authors of [208] concluded that predictions over
a four-year interval have a root mean squared (RMS) accuracy of 0.4s, with a peak of 0.8s. However, in
addition to determining DT by observing distant stars, DT can be approximated based on observations of
the motion of GNSS satellites [169].
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Fig. 12: Plots of (a) the DT Earth-orientation parameter and (b) the difference between UTC and UT1, which is discontinuous
due to the inclusion of leapseconds in UTC. The data was taken from the U.S. Naval Observatory’s finals2000A.data file
available at the link in Table 2. Interpolation between points, including the addition of tidal terms, was performed using Matlab
code based off of interp.f that the IERS provides at the link in Table 2. Though the UTC day duration is not quite uniform due
to the presence of leapseconds, the scale of the chart is such that it is not noticeable.

40Longitudinal differences can be approximated by setting a clock for noon when the Sun is highest in the sky at a reference
location and then observing when noon occurs after one has moved to a different location. This requires precise timekeeping,
which was only possible after John Harrison invented the marine chronometer ´a major improvement over some of the bizarre
superstitious methods that some sailors tried (unsuccessfully) to use to keep time over distances. A monograph on the topic
including discussions on why sailors thought they could tell time using injured dogs is [303].
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The DT Earth-orientation parameter is directly linked to the LOD parameter. The LOD parameter is
defined to be

LOD , ´dptUT1 ´ tTAIq
dtTAI

. (1)

Consequently, by integrating over the LOD parameter in TAI, one obtains a version of DT in TAI time. Since
a clock in TAI tics at the same rate as one in TT, one can replace TAI with TT in Eq. (1) without changing
the value of LOD for an equivalent time in TT. The LOD parameter is related to the rotation rate of the Earth
as

w “ w

N
ˆ

1 ´ LOD
Tday, TAI

˙
(2)

where w is the instantaneous angular velocity of the Earth’s rotation in radians per second, Tday, TAI “ 86400s
is the nominal length of one day in TAI, and w

N “ 72921151.467064 ˆ 10´12 rad
s is the nominal angular ve-

locity of the Earth at epoch 1820 based on the duration of the mean solar day being Tday, TAI. Note that
w

NTday, TAI ‰ 2p , because the Earth’s rotation around the Sun means that the Earth must rotate more than
2p radians between noon on one day and noon (as defined by the peak height of the Sun in the sky) the
next day. The specific numerical value used is from http://hpiers.obspm.fr/eop-pc/earthor/
ut1lod/UT1.html . Though a very complicated explicit formula for LOD as a function of various celes-
tial parameters has been derived [352], no accurate long-term predictions exist.

3.3 Units of Time

In general, to maximize the portability of data across sensor networks, it is good practice to always use
SI units, which are defined in [39], because all countries except for the United States, Burma (Myanmar),
and Liberia have legally adopted the SI standard [43]. The SI unit of time is the second and NASA SPICE
software defines ET as seconds in TDB past the J2000.0 epoch.

However, ephemerides are often listed in terms of Julian dates, which are specified as a count of days,
where a Julian day contains precisely 86400s and a Julian year is precisely 365.25 Julian days. For example,
noon in TT on the first of January in the year 2000 according to the Gregorian calendar (the calendar used
by most countries) is JD 2451545.0 TT, where JD indicates Julian date and TT notes that the timescale is
terrestrial time. An explanation of Julian dates and the related Julian calendar is given in [285, Ch. 1.25,12.7,
12.8]. Julian days begin at noon rather than midnight. A modified Julian date (MJD) is a Julian date minus
2400000.5. By subtracting off such a large constant term, Julian dates can be represented to a slightly higher
degree of precision using the same number of bits. For example, a single-precision floating-point number
has 6 digits of precision [149], meaning that the time resolution of a normal Julian date is worse than one
day and that of a modified Julian date is 1{10 of a day. On the other hand, a double-precision floating-point
number has 15 digits of precision [149], allowing for 864 µs precision for a regular Julian date and 8.64 µs
precision with a modified Julian date. Julian dates are used in the Navy’s astronomical almanac [70, Ch.
B, L]. Gregorian calendar years coupled with offsets in terms of Julian days are used in the TLE set data
format used by NORAD for specifying orbital parameters [339]. The IAU SOFA software as well as the
U.S. Navy’s NOVAS software both use two-part Julian dates. The date is split into two double-precision
floating-point numbers. The date can be split in any manner. However, it is common for the first number to
be an integer number of days and the second number to be the fraction of the day. This means that 24 hours
can be expressed with approximately 15 digits of precision (better than nanosecond precision).
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It is recommended that, when possible, data in a target-tracking system be recorded with a full date,
preferably a Julian date, since it is standard, rather than providing the time of the data as a simple offset from
when the system was turned on. The use of true dates allows users to later associate the measurements with
other relevant information collected at the same time. For example, radar measurements with appropriate
global timestamps can be associated with ADS-B data that can serve as “truth” for assessing performance.

3.4 Time for Celestial Observations

When determining the location of a celestial object in the sky at a particular time, the finite speed of
light must be taken into account. One does not see the current location of the object. Rather, one sees
where the object was when the light being observed left the object. Appendix I describes how the light-time
correction is performed (with an approximate general relativistic correction) for an observer on the Earth
using NASA’s SPICE toolkit, as the toolkit only provides estimates with respect to the center of the Earth.
Uncertainty in the time light hits the target leads to uncertainty in the time to which a tracking algorithm
should be predicted for a measurement update. Only a very small number of recursive tracking algorithms
have been published that account for the light-time delay [97, 231]. When given full (bistatic range and
angle) measurements, one can use the apparent time the light hit the target. However, certain high bistatic
angle arrangements between the transmitter and the receiver can be particularly sensitive to error when using
the apparent time [52].

Note, however, that analogous speed of light delays for the effects of gravitational forces should not be
used when integrating using common Newtonian or post-Newtonian dynamic models to determine the orbits
of objects. The IERS conventions suggest a parameterized post-Newtonian model for orbital dynamics [257,
Ch. 10]. The papers [216,344,345] debate whether the “speed of gravity” is infinite. When using Newton’s
law of universal gravitation to compute the orbits of the planets, very large errors are introduced if one
tries to limit the speed of gravity to the speed of light. However, the controversy is resolved in [40] where
the general relativistic aberration of gravity explains the phenomenon: Orbits based on Newton’s law of
universal gravitation assuming an infinite speed of gravity are a good approximation to orbital dynamics
using general relativity under which theory the speed of gravity is equal to the speed of light. More recent
evidence considering the Shapiro time delay based on the bending of light from quasars around Jupiter
confirms that under general relativity, the speed of gravity is finite [188]. Thus, when using a Newtonian or
post-Newtonian gravitational model, gravitational forces should be taken as instantaneous. However, when
using a full general relativistic model, gravitational effects travel at the speed of light.
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4. COORDINATE SYSTEMS FOR DESCRIBING LOCATIONS ON AND NEAR THE EARTH

This section describes coordinate systems that are commonly used for describing points on or near the
Earth. However, the results can be applied to other solar system bodies when given the appropriate data
for the body. For example, whereas Earth gravitational models are discussed in this section regarding or-
thometric heights, similar models are available for the Moon and other planets. For example, a recent
spherical-harmonic gravitational model for the Moon called GL0660B is described in [186] and the associ-
ated coefficients can be downloaded from the International Centre for Global Earth Models (ICGEM).

4.1 A Number of Common Spherical and Direction-Cosine Systems

A variety of non-Cartesian coordinate systems are used to describe the location of points with respect to
near-Earth observers. Unfortunately, there is often little consensus on how many such coordinate systems
are implemented. For example, Fig. 13 illustrates the various ways that a set of Cartesian axes is mapped
to various coordinate systems for applications that might arise when performing tracking and navigation.
When considering points on the Earth using spherical coordinates, one often uses longitude and geocentric
latitude, as illustrated in Fig. 13. Note, however, that except when synthesizing magnetic and gravitational
potential models, as discussed in Appendix F, points near the Earth are generally given in longitude and
geodetic latitude, which is an ellipsoidal coordinate system, discussed in Section 4.2. 19
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Fig. 14. Various quantities related to spherical coordinate systems commonly
used for target tracking and localization. In all instances, r is one-way
range. When discussing points on the Earth, one often uses longitude �
and geocentric latitude �c, where the z-axis is the axis of rotation of the
Earth. When discussing the local horizon coordinate system, one often uses
azimuth A measured clockwise from the y-axis (East) and an angle called
the zenith distance � measured from the z-axis, which is the gravitational
vertical. Alternatively instead of the zenith angle, one sometimes uses the
altitude a (which is another name for �c in this system). When discussing
measurements by a radar, one might use the r ´ u ´ v coordinate system,
where the z-axis is the pointing direction of the radar (boresight) and it is
assumed that the z component is positive (in front of the radar). Alternatively,
spherical coordinates for a radar often use azimuth � and elevation �, where
the px´zq-plane is level with the radar face. In some instances, � is measured
clockwise as opposed to counterclockwise as shown, or a different axis is
chosen to be the boresight.

Fig. 14 illustrates the various ways that a set of Cartesian axes
is mapped to various coordinate systems for applications that
might arise when performing tracking and navigation. When
considering points on the Earth using spherical coordinates,
one often uses longitude and geocentric latitude, as illustrated
in Fig. 14. Note, however, that except when synthesizing
magnetic and gravitational potential models, as discussed
in Appendix F, points near the Earth are generally given
in longitude and geodetic latitude, which is an ellipsoidal
coordinate system, discussed in Subsection IV-B.

The horizon coordinate system, which is mentioned in
[334, Ch. 5.2.5.1], is often used as a local coordinate system
for astronomical observation. The z-axis is the gravitational
vertical (the zenith), which points in the opposite direction
of acceleration due to gravity. Such a system often specifies
points using an azimuth angle A, which can be viewed
similarly to a co-longitude, as it is measured from the y-axis
clockwise in the px ´ yq-plane, and an angle called a zenith
distance � measured from the gravitational vertical, or an angle
called an altitude a (an elevation angle), measured from the
px ´ yq-plane.

In general, however, it is better to express directions using
the zenith distance instead of the altitude angle as it eliminates
possible confusion regarding the definition of the “horizon.” In
the horizon coordinate system, the x and y axes are nominally
located in the plane of the horizon. One understands the
horizon to be the boundary between land and sky. However,
refractive effects cause the apparent horizon to dip below
the local tangent plane. Approximations to determine the dip
angle as a function of the height of the observer are given
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Fig. 15. A view of the rising Sun from Hilo Hawaii (19.7056˝ geodetic
latitude, ´155.0858˝ longitude) at sea level (assumed to be the location of
the ground, which is assumed to have zero WGS-84 ellipsoidal height), facing
North-East on 1 June 2013, at 15:42 UTC assuming an ambient temperature
of 20˝ C, 70% humidity, and standard pressure (101325 Pa). The horizontal
line is the horizon. The lower, blue circle is the outline of the Sun, ignoring
atmospheric refraction, based on the DE430 ephemerides accessed using the
SPICE toolkit available at the links in Table II. The method of Appendix I for
loading the Sun’s ephemerides was used along with the method of Appendix
L for determining the outlining points of the Sun. The upper red circle is the
apparent location of the Sun when using the numerical integration ray-tracing
method of [139] and [334, Ch. 7.2] with the Sinclair atmospheric model of
[295]. An observer at sea level can see the Sun over the horizon. The look
direction in degrees North of East and the vertical for determining the horizon
are based on the ellipsoidal East-North up model described in Section IV-B
and not on a true horizon coordinate system.

in [334, Ch. 12.3.3.1]. However, atmospheric turbulence can
make observations near the horizon (or observations of the
horizon itself) unreliable. For example, in [366], it is con-
cluded that refraction within approximately 5˝ of the horizon is
so variable that angular measurements of astronomical objects
are limited to approximately one arcminute when considering
visible light. Confusion when using altitude measurements
can arise depending upon whether they are with respect to
the apparent, refraction-corrupted horizon or with respect to
the true geometric horizon. Though tracking and navigation
algorithms such as [266] have made use of measurements
of the horizon for the purposes of navigation and orienta-
tion estimation, horizon measurements are unreliable due to
atmospheric turbulence. Moreover, the apparent location of the
horizon that a sensor might detect can vary due to the presence
of mountains versus ocean. Note that it is usually possible to
see objects over the geometric horizon. Figure 15 illustrates
this fact when considering a sunrise viewed from Hilo Hawaii.

Figure 14 also illustrates the angular relationship often used
when discussing measurements by a radar. In such an instance,
the z-axis is often the pointing direction of the radar, and
azimuth � and elevation � are defined in completely different
planes than are used when discussing longitude and geocentric
latitude. Such a spherical coordinate system provides the basis
of the r ´ u ´ v direction cosine system, which is described
in the first tutorial in this series [57].

For the purposes of this report, the spherical coordinate

Fig. 13: Various quantities related to spherical coordinate systems commonly used for target tracking and localization. In all
instances, r is one-way range. When discussing points on the Earth, one often uses longitude l and geocentric latitude fc, where
the z-axis is the axis of rotation of the Earth. When discussing the local horizon coordinate system, one often uses azimuth
A measured clockwise from the y-axis (East) and an angle called the zenith distance z measured from the z-axis, which is the
gravitational vertical. Alternatively, instead of the zenith angle, one sometimes uses the altitude a (which is another name for fc
in this system). When discussing measurements by a radar, one might use the r ´ u ´ v coordinate system, where the z-axis is the
pointing direction of the radar (boresight) and it is assumed that the z component is positive (in front of the radar). Alternatively,
spherical coordinates for a radar often use azimuth q and elevation j , where the px ´ zq-plane is level with the radar face. In some
instances, q is measured clockwise as opposed to counterclockwise as shown, or a different axis is chosen to be the boresight.
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The horizon coordinate system, which is mentioned in [332, Ch. 5.2.5.1], is often used as a local
coordinate system for astronomical observation. The z-axis is the gravitational vertical (the zenith), which
points in the opposite direction of acceleration due to gravity. Such a system often specifies points using
an azimuth angle A, which can be viewed similarly to a co-longitude, as it is measured from the y-axis
clockwise in the px ´ yq-plane, and an angle called a zenith distance z measured from the gravitational
vertical, or an angle called an altitude a (an elevation angle), measured from the px ´ yq-plane.

In general, however, it is better to express directions using the zenith distance instead of the altitude
angle as it eliminates possible confusion regarding the definition of the “horizon.” In the horizon coordinate
system, the x and y axes are nominally located in the plane of the horizon. One understands the horizon
to be the boundary between land and sky. However, refractive effects cause the apparent horizon to dip
below the local tangent plane. Approximations to determine the dip angle as a function of the height of the
observer are given in [332, Ch. 12.3.3.1]. However, atmospheric turbulence can make observations near
the horizon (or observations of the horizon itself) unreliable. For example, in [367], it is concluded that
refraction within approximately 5˝ of the horizon is so variable that angular measurements of astronomical
objects are limited to approximately one arcminute when considering visible light. Confusion when using
altitude measurements can arise depending upon whether they are with respect to the apparent, refraction-
corrupted horizon or with respect to the true geometric horizon. Though tracking and navigation algorithms
such as those in [266] have made use of measurements of the horizon for the purposes of navigation and
orientation estimation, horizon measurements are unreliable due to atmospheric turbulence. Moreover, the
apparent location of the horizon that a sensor might detect can vary due to the presence of mountains versus
ocean. Note that it is usually possible to see objects over the geometric horizon. Figure 14 illustrates this
fact when considering a sunrise viewed from Hilo, Hawaii.

In addition to illustrating angular relations when discussing a spherical coordinate system for points
on the Earth or astronomical observations, Fig. 13 also shows the angular relationship often used when
discussing measurements by a radar. In the context of radar signal processing, the z-axis is often the pointing
direction of the radar, and azimuth q and elevation j are defined in completely different planes than are used
when discussing longitude and geocentric latitude. Such a spherical coordinate system provides the basis of
the r ´ u ´ v direction cosine system, which is described in the first tutorial [55] in the series [54, 55, 57].

For the purposes of this report, the spherical coordinate systems most relevant to target tracking are the
longitude, geocentric latitude system, where a point consists of pr,l ,fcq, and the range-azimuth-elevation
system pr,q ,jq. The former is necessary for using gravitational- and magnetic-field models and the latter is
commonly used to describe measurements by a radar.

Given a point pr,l ,fcq in the longitude, geocentric latitude system at range r, longitude l , and geocentric
latitude fc, the location in Cartesian coordinates is given by

x “ r cospl qcospfcq (3)
y “ r sinpl qcospfcq (4)
z “ r sinpfcq. (5)
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Fig. 14: A view of the rising Sun from Hilo, Hawaii (19.7056˝ geodetic latitude, ´155.0858˝ longitude) at sea level (assumed
to be the location of the ground, which is assumed to have zero WGS 84 ellipsoidal height), facing Northeast on 1 June 2013, at
15:42 UTC assuming an ambient temperature of 20˝ C, 70% humidity, and standard pressure (101,325Pa). The horizontal line is
the horizon. The lower, blue circle is the outline of the Sun, ignoring atmospheric refraction, based on the DE430 ephemerides
accessed using the SPICE toolkit available at the links in Table 2. The method of Appendix I for loading the Sun’s ephemerides
was used along with the method of Appendix L for determining the outlining points of the Sun. The upper red circle is the
apparent location of the Sun when using the numerical integration ray-tracing method of [138] and [332, Ch. 7.2] with the Sinclair
atmospheric model of [295]. An observer at sea level can see the Sun over the horizon. The look direction in degrees East of North
and the vertical for determining the horizon are based on the ellipsoidal East-North-Up model described in Section 4.2 and not on
a true horizon coordinate system.

Similarly, the conversion from Cartesian coordinates to spherical geodetic coordinates is

r “
a

x2 ` y2 ` z2 (6)
l “arctan2py,xq (7)

fc “arcsin
´ z

r

¯
, (8)

where the function arctan2 represents a four-quadrant inverse tangent of y{x. In such a system, a local
Cartesian set of orthogonal basis vectors can be defined at each point by differentiation of Eqs. (3), (4), and



Coordinate Systems for Target Tracking 33

(5) by r, l , and fc to get

dr
dl

“c1u1 “
»

–
´r sinpl qcospqcq
r cospl qcospqcq

0

fi

fl (9)

dr
dfc

“c1u2 “

»

—–
´r cospl qsinpqcq
´r sinpl qsinpqcq

r cospqcq

fi

�fl (10)

dr
dr

“u3

»

—–
cospl qcospqcq
sinpl qsinpqcq

sinpqcq

fi

�fl (11)

where u1, u2, and u3 form an orthonormal basis and the constants c1 and c2 in Eqs. (9), (10), and (11)
represent the fact that the vectors do not have unit magnitudes. This local coordinate system is the spher-
ical equivalent to the local East-North-Up (ENU) coordinate system discussed in Section 4.2 when using
ellipsoidal coordinates.

On the other hand, if a point is given in the range-azimuth-elevation system pr,q ,jq at range r, azimuth
q and elevation j , then the location in Cartesian coordinates is given by

x “ r sinpqqcospjq (12)
y “ r sinpjq (13)
z “ r cospqqcospjq (14)

so the inverse transformations are

r “
a

x2 ` y2 ` z2 (15)
q “arctan2px,zq (16)

j “arcsin
´y

r

¯
. (17)

Though geocentric spherical coordinates are often used for physical Earth models, ellipsoidal coordi-
nates, which use geodetic latitude, are more commonly used for discussing the location of objects near the
Earth. Section 4.2 discusses ellipsoidal coordinates and the reference ellipsoid, which is a good approxima-
tion to the shape of the Earth.

4.2 Coordinates on the Reference Ellipsoid

The Earth is approximately oblate spheroidal in shape41 (an ellipsoidal shape), as illustrated in Fig.
15, which shows an ellipsoid with a graticule (lines of geodetic latitude [horizontal] and longitude [vertical]
drawn). The true shape of the Earth can be defined either in terms of the terrain or gravitationally, in terms of

41The study of the shape of the Earth is termed geodesy; the use of computers to aid in geography is geomatics.
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a hypothetical surface of equal gravitational potential called the geoid, which defines MSL. Understanding
the geoid and geoidal heights is important for using terrain data and various physical models. Sections 5
and 6 discuss the gravitational shape of the Earth and the effects of the geoid and tides on coordinate-system
determination.
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Fig. 4. The Earth is approximately shaped like an oblate spheroid; that is an ellipse rotated about the z axis (a type of ellipsoid). The non-spheroidal nature
of the Earth’s shape has been exaggerated in the diagrams. The horizontal lines in (a) represent lines of latitude; vertical lines represent lines of longitude.
Longitude is an angle measured with respect to the x-axis in the xy plane. The DoD’s WGS-84 standard [12] and IERS conventions [53], among many other
sources, define reference ellipsoids for the Earth. In (b), a is the semi-major axis (equatorial radius), and b is the semi-minor axis (polar radius).
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Fig. 5. An illustration of how latitude is measured for a point an altitude
h above the reference ellipsoid. Unless specified otherwise, the term latitude
generally means the geodetic latitude �, which is taken with respect to a
normal to the reference ellipsoid. On the other hand, the geocentric latitude
�c, which is seldom used, is the angle measured with respect to the origin.
The horizontal axis is anywhere in the xy plane, which comes out of the page
in the diagram.

The WGS-84 standard defines a reference ellipsoid for the
shape of the Earth, which is derived from parameters for the
Earth’s gravitational field and is a low-order approximation
of the geoid. Table III lists the parameters for the reference
ellipsoid, and Fig. 4b shows how the parameters relate to the
ellipse of revolution. The flattening factor is related to the
semi-major (a) and semi-minor (b) axes through the equation

f =
a � b

a
. (37)

The reference ellipsoid can be directly related to an approxi-
mation of the gravitational potential (see [26, Ch. 2.7]).

B. Coordinates on the Reference Ellipsoid

Geodetic and geocentric latitudes are angles measured with
respect to the equatorial plane. The geocentric latitude �c

of a point is the angle formed between the equatorial plane
and a line from the center of the Earth to the point. The
geodetic latitude � is the angle formed between the equatorial
plane and a normal to the reference ellipsoid that passes
through the point. Figure 5 illustrates the difference between
geocentric and geodetic latitudes. Unless otherwise specified,
maps generally show geodetic latitude. On the other hand, if
one draws a line from the coordinate origin to a point and
projects the line onto the xy (equatorial) plane, the angle the
line forms with the x-axis (the prime meridian) is the longitude
�. Geocentric latitude and longitude are equivalent to elevation
and azimuth in a spherical coordinate system.

When using the ellipsoidal gravitational model, the normal
to the reference ellipsoid coincides with the vertical direction
defined by the negative of the acceleration due to gravity. That
is, “up” is in the direction of r̃ in Fig. 5. Latitude, longitude,
and altitude (height) form an orthogonal set of coordinates.
Thus, a set of basis vectors derived from local ellipsoidal
coordinates can be used to define u1, u2, and u3 initially,
but not over time. Rather, the basis vectors must evolve as
discussed in Section II-B.

A target’s position is given in Earth-Centered, Earth-Fixed
(ECEF) coordinates in terms of a vector taken from the
center of the Earth, such as r in Fig. 5. Such a position
can be converted into geodetic latitude, longitude, and height
coordinates (�, �, h) using the formulae of [57], which are
summarized in Appendix B. Figure 5 shows a point above the
reference ellipsoid with its height h measured with respect to
the normal to the reference ellipsoid. The conversion of a point
given in geodetic latitude, longitude, and height coordinates
(�, �, h) to ECEF Cartesian coordinates can be done as

x = (Ne + h) cos(�) cos(�) (38)

NRL/JA/5340-14-0008

Fig. 15: The Earth is approximately shaped like an oblate spheroid; that is, an ellipse rotated about the z-axis (a type of ellipsoid).
The non-spheroidal nature of the Earth’s shape has been exaggerated in the diagram. The horizontal lines represent lines of
latitude; vertical lines represent lines of longitude. Longitude is an angle measured with respect to the x-axis in the px ´ yq-plane.
It is analogous to right ascension in Fig. 4. This figure was also used in [58].

Geodetic latitude and longitude form the most common coordinate system used on maps and require
the definition of a reference ellipsoid. A history of the development of the reference ellipsoid is given
in [136, Ch. 2.11]. The WGS 84 standard [69, Ch. 3] and the IERS conventions [257, Ch. 4.2.6] define
reference ellipsoids for the Earth to serve as horizontal datums. Datums serve as reference systems for
positioning. The reference ellipsoid suggested in the IERS conventions is the Geodetic Reference System
1980 (GRS 80), which is a standard set by the IUGG [236]. Table 5 lists the defining parameters of the two
aforementioned reference ellipsoids, as well as the parameters used specifically in ephemerides broadcast to
GPS receivers and the parameters of two reference ellipsoids associated with the Earth Gravitation Model
2008 (EGM2008), which is used in gravitational models in this report.42 The non-geometric parameters
GMJ and wJ are explained below. The subscript J on the parameters in the table is a symbol representing
the Earth.43 Such subscripts are omitted when discussing reference ellipsoids in general.

42Though the EIGEN-6C4 model described in [102], which is available from the ICGEM’s web site at http://icgem.gfz-
potsdam.de/ICGEM/ , is potentially more accurate than the EGM2008 model, the EGM2008 model is used in this report due to
its widespread use and the availability of geoid models based on it.

43An alternative symbol for the Earth is C. A number of astronomical symbols exist, such as @ for the Sun, K for the Moon, D
for Mars, and B for Venus. The IAU’s style manual [361] discourages the use of such symbols and recommends that they be defined
if they are used. However, such symbols are commonly used as subscripts in mathematical expressions in technical articles.



Coordinate Systems for Target Tracking 35

Table 5: Parameters for Various Ellipsoidal Models 21

Quantity WGS 84 WGS 84 GRS-80 EGM2008 EGM2008 for
GPS Navigation (IERS Suggested) Mean-Earth Ellipsoid Geopotential Coefficients

GMJ 3.9860050 ˆ 1014 m3

s2 3.986004418 ˆ 1014 m3

s2 3.986005 ˆ 1014 m3

s2 3.986004415 ˆ 1014 m3

s2

aJ 6378137.0 m 6378137.0 m 6378136.58 m 6378136.3 m
1{fJ 298.257223563 298.257222101 298.257686

7.2921158553 ˆ 10´5 rad
s `

�J 4.3 ˆ 10´15 UT1´2451545
36525

rad
s

7292115 ˆ 10´11 rad
s 7292115 ˆ 10´11 rad

s

TABLE V
PARAMETERS FOR VARIOUS ELLIPSOIDAL MODELS. GMJ IS THE UNIVERSAL GRAVITATIONAL CONSTANT TIMES THE MASS OF THE EARTH; aJ IS THE
SEMI-MAJOR AXIS OF THE EARTH; fJ IS THE FLATTENING FACTOR OF THE ELLIPSOIDAL EARTH AND �J IS THE MEAN ROTATIONAL VELOCITY OF THE

EARTH. THE WGS 84 REFERENCE IS [?, CH. 3]. THE GPS VERSION OF IT IS ONLY USED WHEN DEALING WITH EPHEMERIDES BROADCAST BY GPS
SATELLITES. THE GEODETIC REFERENCE SYSTEM 1980 IS RECOMMENDED BY THE IERS IN [?, SEC. 4.2.6]. THE PARAMETERS FOR THE EGM2008

MEAN-EARTH ELLIPSOID AND THE ELLIPSOID PARAMETERS FOR THE EGM2008 GEOPOTENTIAL COEFFICIENTS ARE TAKEN FROM THE LINKS FOR THE
EGM2008 MODEL IN TABLE ??. THE VALUES FOR THE EGM2008 GEOPOTENTIAL COEFFICIENTS DO NOT FULLY DEFINE AN ELLIPSOID.

Earth Gravitation Model 2008 (EGM2008), which will be used
in gravitational models in this report.39 The extra parameters
GMJ and �J shall be subsequently discussed. The subscript
J on the parameters in the table is a symbol representing the
Earth.40 Such subscripts are omitted when discussing reference
ellipsoids in general.

The reference ellipsoids are obtained by rotating a two-
dimensional ellipse defined in the px ´ yq-plane about the
z-axis to make it three dimensional. Latitude and longitude
define locations on the surface of a reference ellipsoid. Altitude
(the height; not the angle), on the other hand, can be expressed
in terms of a height above the ellipsoid, or in terms of
another vertical datum, as shall be discussed in Section ??.
The WGS 84 standard [?, Ch. 3] defines the standard ellipse
approximating the Earth shape (sometimes referred to as the
“figure of the Earth”) to be centered at the center of mass of
the Earth with the radius being the equatorial radius of the
Earth aJ and the inverse of the flattening factor being 1{fJ
as given in Table ??. For a generic ellipse of ellipsoid, the
flattening factor is related to the equatorial radius a (distance
from the center to a point on the equator), which is the same
as the semi-major axis, and the polar radius b (distance from
the center to the North or South pole), which is the same as
the semi-minor axis, of the ellipse/ellipsoid by

f “ a ´ b

a
. (18)

The difference between the equatorial radius and the polar
radius of the reference ellipsoid is approximately aJ ´ bJ «
21.4 km, meaning that the Earth is nearly spherical. Points on
a reference ellipsoid in three dimensions satisfy the equation

x2 ` y2

a2
` z2

a2p1 ´ fq2 “ 1. (19)

39Though the EIGEN-6C4 model described in [?], which is available from
the ICGEM’s web site at http://icgem.gfz-potsdam.de/ICGEM/ , is potentially
as more accurate than the EGM2008 model, the EGM2008 model is used in
this report due to its widespread use and the availability of geoid models
based off of it.

40An alternative symbol for the Earth is C. A number of astronomical
symbols exist, such as @ for the Sun, K for the Moon, D for Mars, and B for
Venus. The IAU’s style manual [?] discourages the use of such symbols and
recommends that they be defined if they are used. However, such symbols
are commonly used as subscripts in mathematical expressions in technical
articles.
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Fig. 17. An illustration of how latitude is measured. When discussing the
latitude of a point (the red circle), unless specified otherwise, one generally
means the geodetic latitude �, which is taken with respect to a normal to
the reference ellipsoid and generally does not intersect the origin. On the
other hand, the geocentric latitude �c, which is seldom used, is the angle
measured with respect to the origin. h is the ellipsoidal height of the point.
The horizontal axis is anywhere in the px ´ yq-plane. This diagram was also
used in [?].

Longitude is an angle measured counterclockwise (when
looking down from the North pole) from the x-axis in the
px ´ yq-plane, analogous to right ascension in Fig. ??.41

However, latitude is more complicated. To be able to properly
locate points on a map and to use common gravitational
models in tracking algorithms, one must differentiate be-
tween geocentric latitude (spherical coordinates) and geodetic
latitude (ellipsoidal coordinates), because both are needed.
Figure ?? shows the difference between geocentric latitude
�c and geodetic latitude �. Geocentric latitude is essentially
the “elevation” in a spherical coordinate system. It is an angle
measured up from the px ´ yq-plane (the equatorial plane).
Geodetic latitude, on the other hand, for a particular point
is obtained by drawing a line from the point perpendicularly
intersecting the reference ellipse. The angle obtained due to
the intersection of that line and the equatorial plane is the

41On other planets, planetocentric and planetographic longitudes can differ
in direction. Planetocentric longitudes are measured counterclockwise from
the x-axis when looking down from the North pole. On the other hand,
planetographic longitudes are measured positively in the direction opposite
the rotation direction of the planet [?, Ch. 4.22]. The two coincide for the
Earth.

GMJ is the universal gravitational constant times the mass of the Earth; aJ is the semi-major axis of the Earth; fJ is the flattening
factor of the ellipsoidal Earth; and wJ is the mean rotational velocity of the Earth. The WGS 84 reference is [69, Ch. 3]. The

GPS version of it is used only when dealing with ephemerides broadcast by GPS satellites. The Geodetic Reference System 1980
is recommended by the IERS in [257, Sec. 4.2.6]. The parameters for the EGM2008 mean-Earth ellipsoid and the ellipsoid

parameters for the EGM2008 geopotential coefficients are taken from the links for the EGM2008 model in Table 2. The values
for the EGM2008 geopotential coefficients do not fully define an ellipsoid.

The reference ellipsoids are obtained by rotating a two-dimensional ellipse defined in the px ´ yq-plane
about the z-axis to make it three dimensional. Latitude and longitude define locations on the surface of a
reference ellipsoid. Altitude (the height; not the angle), on the other hand, can be expressed in terms of a
height above the ellipsoid, or in terms of another vertical datum, as discussed in Section 5. The WGS 84
standard [69, Ch. 3] defines the standard ellipse approximating the Earth shape (sometimes referred to as the
“figure of the Earth”) to be centered at the center of mass of the Earth with the radius being the equatorial
radius of the Earth aJ and the inverse of the flattening factor being 1{ fJ as given in Table 5. For a generic
ellipse or ellipsoid, the flattening factor is related to the equatorial radius a (distance from the center to a
point on the equator), which is the same as the semi-major axis, and the polar radius b (distance from the
center to the North or South pole), which is the same as the semi-minor axis, of the ellipse/ellipsoid by

f “ a ´ b
a

. (18)

The difference between the equatorial radius and the polar radius of the reference ellipsoid is approximately
aJ ´ bJ « 21.4km, meaning that the Earth is nearly spherical. Points on a reference ellipsoid in three
dimensions satisfy the equation

x2 ` y2

a2 ` z2

a2p1 ´ f q2 “ 1. (19)

Longitude is an angle measured counterclockwise (when looking down from the North pole) from the x-
axis in the px´yq-plane, analogous to right ascension in Fig. 4.44 However, latitude is more complicated. To
be able to properly locate points on a map and to use common gravitational models in tracking algorithms,
one must differentiate between geocentric latitude (spherical coordinates) and geodetic latitude (ellipsoidal

44On other planets, planetocentric and planetographic longitudes can differ in direction. Planetocentric longitudes are measured
counterclockwise from the x-axis when looking down from the North pole. On the other hand, planetographic longitudes are
measured positively in the direction opposite the rotation direction of the planet [285, Ch. 4.22]. The two coincide for the Earth.
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coordinates), because both are needed. Figure 16 shows the difference between geocentric latitude fc and
geodetic latitude f . Geocentric latitude is essentially the “elevation” in a spherical coordinate system. It is
an angle measured up from the px ´ yq-plane (the equatorial plane). Geodetic latitude, on the other hand,
for a particular point is obtained by drawing a line from the point perpendicularly intersecting the reference
ellipse. The angle obtained due to the intersection of that line and the equatorial plane is the geodetic
latitude.

f
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h

r

z
Po
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rR
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iu

s,
b J

Equatorial Radius, aJ

Fig. 16: An illustration of how latitude is measured. When discussing the latitude of a point (the red circle), unless specified
otherwise, one generally means the geodetic latitude f , which is taken with respect to a normal to the reference ellipsoid and
generally does not intersect the origin. On the other hand, the geocentric latitude fc, which is seldom used, is the angle measured
with respect to the origin. h is the ellipsoidal height of the point. The horizontal axis is anywhere in the px´yq-plane. This diagram
is also used in [58].

Unless otherwise specified, the latitude shown on maps is almost always geodetic latitude. While the
definition of geodetic latitude is more complicated than that of geocentric latitude, before the advent of
satellite geodesy using GPS and other means, geodetic latitude was significantly easier to measure than
geocentric. A normal vector to a point on the ellipsoid of the Earth is approximately the gravitational vertical,
which is what one perceives as “up,” so geodetic latitude can be approximately ascertained by measuring
the positions of stars relative to the local vertical. However, high precision determination of the local “up”
vector in a global coordinate system cannot rely on an ellipsoidal approximation. As mentioned in [87],
gravitational deflections of the vertical from the ideal ellipsoidal model can be as high as 70 arcseconds
(about 1.94 ˆ 10´3 degrees) and are quantified in more detail in Section 5.4.

Figure 16 shows a point above the reference ellipsoid with its height h (the ellipsoidal height) measured
with respect to the normal to the reference ellipsoid. The conversion of a point given in geodetic latitude,
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longitude, and height pf ,l ,hq coordinates to global Cartesian coordinates can be done as

x “pNe ` hqcospfqcospl q (20)
y “pNe ` hqcospfqsinpl q (21)

z “
`
Nep1 ´ e2q ` h

˘
sinpfq (22)

Ne “ ab
1 ´ e2 psinpfqq2

(23)

e ,
a

2 f ´ f 2, (24)

where f and l are the latitude and longitude, respectively, e is the first numerical eccentricity of the ellipsoid,
and Ne is the radius of curvature in the meridian [285, Ch. 4.22]. On the other hand, the conversion from
Cartesian coordinates is significantly more complicated and is given in Appendix B.

As described in [58], a set of local orthogonal basis vectors for defining a local ENU coordinate system
can be obtained by differentiating Eqs. (20), (21), and (22) with respect to f , l , and h to get

dr
dl

“c1u1 “

»

—–
´ pNe ` hqcospfqsinpl q
pNe ` hqcospfqcospl q

0

fi

�fl (25)

dr
df

“c2u2“

»

——————–

ˆ
cospfqdNe

df

´ pNe ` hqsinpfq
˙

cospl q
ˆ

cospfqdNe

df

´ pNe ` hqsinpfq
˙

sinpl q
`
Nep1 ´ e2q ` h

˘
cospfq`p1 ´ e2qdNe

df

sinpfq

fi

������fl
(26)

dr
dh

“u3 “

»

—–
cospfqcospl q
cospfqsinpl q

sinpfq

fi

�fl , (27)

where
dNe

df

“ ae2 cospfqsinpfq
´

1 ´ e2 psinpfqq2
¯ 3

2
. (28)

The constants c1 and c2 in Eqs. (26) and (25) represent the fact that the vectors do not have unit magnitudes.
To form basis vectors for the ENU coordinate system, note that dr

dh points up, dr
df

points in the direction of
geographic North along the surface of the ellipse, and dr

dl

points East along the surface of the ellipse. The
ENU coordinate system refers to the normalized forms of the bases in Eqs. (25) through (27).

The East vector u1 cannot be uniquely determined at the poles because dr
dl

has zero magnitude. To
guarantee the existence of a local ENU coordinate system at all locations in ellipsoidal coordinates pf ,l ,hq,
it is better to define u1 by the cross product

u1 “ u2 ˆ u3 (29)
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to guarantee that it always exists. The longitude l determines the orientation of the North and East axes at
the poles.

Table 5 provides more parameters than are necessary to define the reference ellipsoid of the Earth.
Specifically, some models define the universal gravitational constant times the mass of the Earth, GMJ, and
the angular velocity of the Earth’s rotation, wJ, in addition to the necessary semi-major axis aJ and inverse
flattening factors 1{ fJ. Those two additional parameters suffice to define a full ellipsoidal gravitational
approximation for the Earth. Taken together, the full set of parameters defining the WGS 84 and similar
ellipsoids imply a surface of constant gravity potential (a geoid), where the potential is [136, Ch. 2.7]

U0 “ GM
E

arctanpeq ` 1
3

w

2a2, (30)

where GM is the universal gravitational constant times the mass of the body in question and

e , e
1 ´ f

(31)

E ,ae (32)

are the second e numerical eccentricity and the linear eccentricity E of the reference ellipsoid, respectively.
The first numerical eccentricity e is given by Eq. (24). The gravity potential has units of watts per meter.
As noted in [136, Ch. 2.7], when discussing gravity potentials other than those due to ellipsoidal approxi-
mations, the symbol W is generally used instead of U . A subscript of 0 on U in Eq. (30) indicates that the
value is taken on the surface of the ellipsoid.

Knowledge of the relationship between an ellipsoidal gravitational model of the Earth and the reference
ellipsoid is important, as some sources do not explicitly provide the flattening factor of the reference ellip-
soid. Rather, they provide a single spherical-harmonic gravitational coefficient from which the flattening
factor must be deduced. This is the case in the appendix of [252], where instead of a flattening factor,
the second-degree, fully normalized second zonal coefficient for a spherical-harmonic model of the Earth’s
gravitational potential C̄2,0 is given. Such models are discussed in more detail in Appendix F. Here, the
transformation of such a coefficient into the flattening factor for the reference ellipsoid is of interest.

The fully normalized second zonal coefficient for a spherical-harmonic model of the Earth’s gravitational
potential C̄2,0 is related to the unnormalized second zonal coefficient C2,0, which is sometimes just called
C2, as

C2 “ C̄2,0
?

5. (33)

Similarly, C2 is related to the coefficient J2, which as in [202] is often referred to as a Jeffery constant, by

J2 “ ´C2. (34)

Given J2, w , and GM for a particular ellipsoidal-Earth model, the corresponding flattening factor of the
Earth can be found through estimation of the first numerical eccentricity e of the reference ellipsoid using
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the iterative relations from [236], which are

ẽn “ ena
1 ´ e2

n
(35)

qn “1
2

ˆˆ
1 ` 3

ẽ2
n

˙
arctanpẽnq ´ 3

ẽn

˙
(36)

en`1 “
d

3J2 `
ˆ

4
15

˙ˆ
w

2a3e3
n

2GMqn

˙
(37)

where en is the first numerical eccentricity at iteration n. A reasonable starting value is e0 “ 0.8. One
iterates Eqs. (35) through (37) until en no longer changes significantly. The first numerical eccentricity can
be converted into the flattening factor for the ellipsoid using

f “ 1 ´
a

1 ´ e2. (38)

When given with w and GM, reference ellipsoids directly define the gravitational potential and accelera-
tion due to gravity anywhere on Earth. The direction of acceleration due to gravity under an ellipsoidal-Earth
model is simply given by normalizing (27) to get u3. However, the magnitude of the gravitational accelera-
tion under the ellipsoidal-Earth model can be useful for estimating the reading of a linear accelerometer that
is on the ground, not accelerating, relative to the surface of the Earth. As derived in [136, Ch. 2–8], accel-
eration due to gravity under an ellipsoidal model can be explicitly written in terms of ellipsoidal harmonic
coordinates pb ,l ,uq, where b is the reduced latitude, l is the longitude, and u is the ellipsoidal harmonic
semi-major axis. Appendix D provides the equations for converting to and from ellipsoidal harmonic co-
ordinates. Given a point pb ,l ,uq, in ellipsoidal harmonic coordinates, and the linear eccentricity E of the
reference ellipsoid, as well as associated values of GM and w , the acceleration vector g due to gravity seen
by a stationary observer in an Earth-centered Earth-fixed frame of reference is

g “ g

b

u
b

` g

l

u
l

` guuu (39)
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where u
b

, u
l

, and uu are unit vectors in the directions of b , l , and u as given in Appendix D and

g

b

“ 1
w

ˆ
w

2a2q
q0

?
u2 ` E2

´ w

2
a

u2 ` E2
˙

sinpb qcospb q (40)

g

l

“0 (41)

gu “ ´ 1
w

ˆ
GM

u2 ` E2 `
ˆ

w

2a2Eqp

q0pu2 ` E2q

˙ˆ
1
2

sin2pb q ´ 1
6

˙˙
` 1

w
w

2ucos2 pb q (42)

w “
d

u2 ` pE sinpb qq2

u2 ` E2 (43)

qp “3
ˆ

1 ` u2

E3

˙ˆ
1 ´

´ u
E

¯
arctan

ˆ
E
u

˙˙
´ 1 (44)

q0 “1
2

ˆˆ
1 ` 3

b2

E2

˙
arctan

ˆ
E
b

˙
´ 3

b
E

˙
(45)

q “1
2

ˆˆ
1 ` 3

u2

E2

˙
arctan

ˆ
E
u

˙
´ 3

u
E

˙
. (46)

Note that if the flattening factor is zero (the ellipsoid is actually a sphere) then E is zero and one will have
0{0 errors in the computation of various terms. In such an instance, one can use the asymptotic values. That
is, in (40), substitute the value

lim
EÑ0

q
q0

“ b3

u3 (47)

and in (42) substitute

lim
EÑ0

Eqp

q0
“ 3

b3

u2 . (48)

While the issue of a zero flattening factor would not arise when dealing with coordinate systems on the
Earth, it can arise when dealing with coordinates on other celestial bodies. For example, in [274], a zero
flattening factor is suggested for an ellipsoidal model of the Moon.

On the other hand, if the gravity acceleration is only needed on the surface of the reference ellipsoid
g0, then Somigliana’s formula can be used to easily find the magnitude of the gravitational acceleration
vector. The direction of the acceleration vector is then the normalized version of the “up” vector in (27).
Somigliana’s formula is [237, Ch. 2]

kg0k “ age cos2pfq ` bgp sin2pfqb
a2 cos2pfq ` b2 sin2pfq

(49)

where ge is the magnitude of acceleration due to gravity at the equator, gp is the magnitude of acceleration
due to gravity at the poles, f is geodetic latitude (the formula does not depend on longitude), a is the semi-
major axis of the reference ellipsoid, and b is the semi-minor axis of the reference ellipsoid, which can be
found by inverting (18) to get

b “ ap1 ´ f q. (50)
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If the gravitational potential due to the ellipsoidal-Earth model is needed everywhere in space, not just
on the surface of the reference ellipsoid, one can use the formula from [136, Ch. 2–7] in terms of ellipsoidal
harmonic coordinates

U “GM
E

arctan
ˆ

E
u

˙
` w

2a2q
2q0

ˆ
sin2pb q ´ 1

3

˙
` w

2

2
pu2 ` E2qcos2pb q. (51)

Section 5 demonstrates the importance of gravitational potential and acceleration due to gravity in using
data in different coordinate systems.

When considering the use of ellipsoidal latitude and longitude coordinates with common commercial
products, one must be aware that a number of companies base their coordinates on a warped, incorrect
map projection. The Mercator projection is one of the most commonly used map projections because it
is conformal, meaning that angles are locally preserved, though distances are warped. However, many
common online and mobile map applications use a warped Mercator projection called the “web Mercator
projection” that was invented by Google, does not preserve angles, and on which latitude and longitude
coordinates usually do not correctly correspond to the WGS 84 ellipsoidal coordinate system. The NGA
has a presentation detailing why the web Mercator projection produces maps that are incompatible with the
WGS 84 coordinate system, causing positional biases to be as high as 40km in some areas [243].

Additional details and derivations related to the geometry of ellipsoidal-Earth models are given in [270,
271], including how parameters for the reference ellipsoid are empirically found from measurements.
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5. VERTICAL HEIGHT AND GRAVITY

5.1 Definitions of Height

Whereas altitudes (heights) in the IERS conventions (when not using a Cartesian coordinate system) are
defined as h with respect to the reference ellipsoid [257, Ch. 4.2.6], the WGS 84 standard defines vertical
datums with respect to the geoid. The geoid is a surface of constant gravitational potential defining MSL,
or a local measure of MSL. An older version of the WGS 84 standard used to make an exception when
describing the depth of the ocean [67, Pgs. xii–xiv], where local sounding datums were suggested, but the
current version suggests that all heights be reported at ellipsoidal heights [69, Ch. 10.6].

Figure 17 illustrates the differences between ellipsoidal and MSL (orthometric) elevations for a point
on the surface of the Earth. The geoid is a hypothetical surface of constant gravitational potential45 chosen
to approximately coincide with the height of the sea surface in the absence of tides. (This is one possible
definition of MSL. Multiple definitions of MSL exist [75].) The distance between the geoid and the reference
ellipsoid measured on a vertical from the reference ellipsoid is the geoid undulation N. The orthometric
height H of a point is the distance measured from that point to the geoid by following the direction of
gravity downward. This is the usual definition of “height” when one describes the height of a mountain,
for example. The variable direction of gravity is referred to as the “curvature of the plumb line.” Though
orthometric heights are defined in a manner related to how acceleration due to gravity changes as one moves,
surfaces of constant orthometric height are not surfaces of constant gravity or gravitational potential. The
ellipsoidal height h is approximately the sum of the orthometric and geoidal heights.

Figure 18 plots (a) the EGM2008 geoid with magnified undulations and (b) the actual terrain according
to the Earth2012 model with altitudes magnified with respect to MSL. Based solely upon the distance from
the center of the Earth, one might expect there to be no ocean near Europe based on the elevation in (b).
However, since the geoid is high (red) near Europe, the level of the ocean by Europe is more distant from
the center of the Earth than the level of the ocean in the Caribbean. Orthometric height determines how high
something seems in terms of properties such as the thinness of the air. The air on the top of Mount Everest
(the highest mountain in the world in terms of MSL) is thin because the top of Mount Everest is far above
MSL. On the other hand, using the Earth2012 terrain data, one finds that the most distant point from the
center of the Earth is not Mount Everest, but rather is located in the northern Andes mountain range in South
America.46 This is because the Earth is roughly ellipsoidal in shape, so points near the equator tend to be
farther from the center of the Earth.

Table 6 lists a number of different definitions of height/altitude that one might have to deal with when
designing a target-tracking system. Absolute altitude is often the simplest height measure to use when
tracking satellites and ballistic objects. Orthometric heights (MSL heights) are seldom used as components
of a target state in a tracking algorithm. However, they are often used in atmospheric models and terrain
height models. For example, the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter
Radar Extended Model 2000 (NRLMSISE-00) empirical atmospheric model47 described in [74, 261] is pa-
rameterized in terms of orthometric heights. Similarly, the Global Multi-Resolution Terrain Elevation Data

45Contrary to what one might expect, the magnitude of acceleration due to gravity is generally not constant on a surface of
constant gravitational potential.

46The farthest point from the Earth’s center was the topic of the final question in the 2013 National Geographic Bee, with
Chimborazo in Ecuador being the most distant peak from the Earth’s center [14].

47The official Fortran release can be obtained from http://ccmc.gsfc.nasa.gov/modelweb/atmos/
nrlmsise00.html and an unofficial C-code release is at http://www.brodo.de/space/nrlmsise/ .
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Fig. 18. A grossly exaggerated representation of the deviations between the
reference ellipsoid, the geoid, and the terrain. The arrows represent the local
gravitational vertical on the reference geoid (MSL) as determined by gravity.
The elevation of a marked point on the terrain above the reference ellipsoid
is h (ellipsoidal height), which is calculated from a normal to the ellipsoid.
Similarly, the geoid undulation N is the height of a point on the geoid above
the reference ellipsoid traced out by a normal vector. On the other hand, the
orthometric height H is the height that would be measured from the point to
the geoid by following the direction gradient from the point up or down until
it intersected the geoid. If the land were not there, it is the path that an ideal
plumb line would follow. The blue arrows coming of of the geoid represent
the direction of the local vertical at those points. The distance Ñ is often very
close to N , so sometimes one approximates H « h ´ Ñ .

tude coordinates with common commercial products, one must
be aware that a number of companies base their coordinates on
a warped, incorrect map projection. The Mercator projection is
one of the most commonly used map projections because it is
conformal, meaning that angles are locally preserved, though
distances are warped. However, many common online and mo-
bile map applications use a warped Mercator projection called
the “web Mercator projection” that was invented by Google,
does not preserve angles, and on which latitude and longitude
coordinates usually do not correctly correspond to the WGS
84 ellipsoidal coordinate system. The NGA has a presentation
detailing why the web Mercator projection produces maps that
are incompatible with the WGS 84 coordinate system, causing
positional biases to be as high as 40 km in some areas [242].

Additional details and derivations related to the geometry of
ellipsoidal-Earth models are given in [270], [271], including
how parameters for the reference ellipsoid are empirically
found from measurements.

V. VERTICAL HEIGHT AND GRAVITY

A. Definitions of Height

Whereas altitudes (heights) in the IERS conventions (when
not using a Cartesian coordinate system) are defined as h with
respect to the reference ellipsoid [257, Ch. 4.2.6], the WGS 84
standard defines vertical datums with respect to the geoid. The
geoid is a surface of constant gravitational potential defining
MSL, or a local measure of MSL. An older version of the
WGS-84 standard used to make an exception when describing
the depth of the ocean [69, Pgs. xii–xiv], where local sounding
datums were suggested, but the current version suggests that
all heights be reported at ellipsoidal heights [71, Ch. 10.6].

Figure 18 illustrates the differences between ellipsoidal and
MSL (orthometric) elevations for a point on the surface of
the Earth. The geoid is a hypothetical surface of constant

Height Type Description
Absolute Altitude Distance from the center of the Earth

Height measured along the curved plumb lineOrthometric Height with respect to MSL
Altitude based on a local pressure reading and aPressure Altitude standard atmospheric model

Geoid Height The distance between the reference ellipsoid and
Geoid Undulation MSL (the geoid)
Geodetic Height
Ellipsoidal Height Height above the reference ellipsoid

Geopotential difference from surface, divided byGeopotential Height a standard acceleration magnitude g0
TABLE VI

SOME OF THE MORE COMMON HEIGHT MEASURES THAT ARISE IN TARGET
TRACKING PROBLEMS. IN MANY APPLICATIONS, ONLY APPROXIMATE
VALUES OF ORTHOMETRIC HEIGHT AND GEOPOTENTIAL HEIGHT ARE

USED.

gravitational potential42 chosen to approximately coincide with
the height of the sea surface in the absence of tides (One
possible definition of MSL. Note that multiple definitions of
MSL exist [78].). The distance between the geoid and the
reference ellipsoid measured on a vertical from the reference
ellipsoid is the geoid undulation N . The orthometric height
H of a point is the distance measured from that point to the
geoid by following the direction of gravity downward. This is
the usual definition of “height” when one describes the height
of a mountain, for example. The variable direction of gravity
is referred to as the “curvature of the plumb line.” Though
orthometric heights are defined in a manner related to how
acceleration due to gravity changes as one moves, surfaces
of constant orthometric height are not surfaces of constant
gravity or gravitational potential. The ellipsoidal height h is
approximately the sum of the orthometric and geoidal heights.

Figure 19 plots the EGM2008 geoid with magnified undula-
tions and the actual terrain according to the Earth2012 model
with altitudes magnified with respect to MSL. Based solely
upon the distance from the center of the Earth, one might
expect there to be no ocean near Europe based on the elevation
in (b). However, since the geoid is high (red) near Europe, the
level of the ocean by Europe is more distant from the center
of the Earth than the level of the ocean in the Caribbean.
Orthometric height determines how high something seems in
terms of properties such as the thinness of the air. The air on
the top of Mount Everest (the highest mountain in the world
in terms of MSL) is thin because the top of Mount Everest
is far above MSL. On the other hand, using the Earth2012
terrain data, one finds that the most distant point from the
center of the Earth is not Mount Everest, but rather is located
in the northern Andes mountain range in South America.43

This is because the Earth is roughly ellipsoidal in shape, so
points near the equator tend to be farther from the center of
the Earth.

Table VI lists a number of different definitions of
height/altitude that one might have to deal with when de-

42Contrary to what one might expect, the magnitude of acceleration due
to gravity is generally not constant on a surface of constant gravitational
potential.

43The farthest point from the Earth’s center was the topic of the final
question in the 2013 National Geographic Bee with Chimborazo in Ecuador
being the most distant peak from the Earth’s center [15].

Fig. 17: A grossly exaggerated representation of the deviations between the reference ellipsoid, the geoid, and the terrain. The solid
blue arrows represent the local gravitational vertical on the reference geoid (MSL) as determined by gravity. The elevation of a
marked point on the terrain above the reference ellipsoid is h (ellipsoidal height), which is calculated from a normal to the ellipsoid.
Similarly, the geoid undulation N is the height of a point on the geoid above the reference ellipsoid traced out by a normal vector.
On the other hand, the orthometric height H is the height that would be measured from the point to the geoid by following the
(curved) direction gradient from the point up or down until it intersected the geoid (dashed blue arrow). If the land were not there,
it is the path that an ideal plumb line would follow. The distance Ñ is often very close to N (both defined along line normal to the
surface of the reference ellipsoid), so sometimes one approximates H « h ´ Ñ.

2010 (GMTED2010) model provided free online48 by the U.S. Geological Survey (USGS) and the NGA
provides terrain heights in terms of orthometric heights based on a geoid defined by the EGM96 gravita-
tional model [61]. Terrain heights are important in target-tracking algorithms for predicting where ballistic
objects will land (Will it go over the mountain or run into the side of the mountain?), and for determining
whether terrain is obstructing the view of a target in a multistatic network. MSL heights are also used in the
code released with the Enhanced Magnetic Model 2010 (EMM2010) (see Table 2 for documentation and a
link to the code). The EMM2010 model is used in Sections 7 and 8.2, though implemented in a manner not
using MSL heights. Pressure altitudes are commonly reported by transponders on civilian aircraft, including
the common mode S transponder [150]. Geopotential heights are often used in atmospheric models. For
example, the U.S. Standard Atmosphere 1976 [241] uses an approximate geopotential height.

Today, it would be significantly more convenient for terrain elevation data to be given in ellipsoidal
heights when tracking in GTRS coordinates. However, prior to the use of satellites for measuring the ter-
rain, the elevation of the terrain was determined through the direct or indirect measurement of changes in
the gravitational potential on the ground [136, Ch. 4] [160], making elevations with respect to the geoid
the ones directly measured. Researchers still make use of traditional leveling techniques for height deter-
mination to validate and augment newer GPS-aided techniques, such as when Chinese researchers sought
to more accurately determine the height of Mount Everest [44]. The use of gravitational potentials for al-
titude measurements is unlikely to change for high-precision measurements, as modern atomic clocks have
achieved sufficient accuracy that local variations in the geoid height can be measured to an accuracy of 1cm
by comparing the rates of clocks in two different locations [32].

48One can download the terrain elevation data from https://lta.cr.usgs.gov/earth explorer .
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(a) The Geoid, with Magnified Undulations (b) The Terrain, with Magnified Features

Fig. 18: In (a), the tide-free EGM2008 geoid with undulations magnified by a factor of 104 is displayed viewing North and South
America. One can make out the Andes mountain range in South America. In (b), the Earth2012 terrain model with mean ocean,
which is the distance of the terrain from the center of the Earth, is shown with the height above MSL (as given by the WGS 84
reference ellipsoid) exaggerated by a factor of 100. The spherical-harmonic coefficients used to make each plot were obtained
from the sources in Table 2. The undulations and terrain heights were evaluated on a 2500 ˆ 2500 grid in ellipsoidal latitude and
longitude for the geoid and in spherical coordinates for the terrain.

5.2 Computing Orthometric Heights

A number of steps are necessary to convert between the different definitions of height in Table 6 and to
utilize publicly available data models to reproduce the geoid and terrain plots in Fig. 18. A large amount
of terrain data is only easily obtainable in terms of orthometric heights. For example, Fig. 19 plots the
Digital Terrain Model 2006.0 (DTM2006.0), which is provided in terms of spherical-harmonic coefficients
for orthometric heights with respect to the EGM2008 model. The coefficients can be downloaded from the
link in Table 2. This section discusses the definition of the geoid and how geoid and orthometric heights are
related.

A number of methods of estimating the geopotential at MSL are presented in [297]. Some utilize satellite
altimetry along with terrain density models and Earth geopotential models, and others simply try to average
measures of the geopotential over the oceans. The definition of “mean seal level” that is suggested for use
with the EGM2008 geopotential model is based on the geopotential implied by the EGM2008 mean-Earth
ellipsoid, whose parameters are given in Table 5 and which is defined with the height-anomaly-to-geoid
undulation coefficients at the link in Table 2. The documentation for the EGM2008 mean-Earth ellipsoid
does not define the necessary GMJ term or the rotation rate of the Earth wJ that are needed to use (30) to
define the potential of the geoid. Thus, it is assumed that the values for the WGS 84 model from Table 5 are
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Table 6: Common Height Measures Arising in Target Tracking Problems

44 David Frederic Crouse

Height Type Description
Absolute Altitude Distance from the center of the Earth
Orthometric Height Height measured along the curved plumb line with respect to MSL
Pressure Altitude Altitude based on a local pressure reading and a standard atmospheric model
Geoid Height
Geoid Undulation The distance between the reference ellipsoid and MSL (the geoid)

Geodetic Height
Ellipsoidal Height Height above the reference ellipsoid

Geopotential Height Geopotential difference from surface, divided by a standard acceleration magnitude g0

Table 6: Some of the more common height measures that arise in target tracking problems. In many applications,
only approximate values of orthometric height and geopotential height are used.

Table 6 lists a number of different definitions of height/altitude that one might have to deal with when
designing a target-tracking system. Absolute altitude is often the simplest height measure to use when
tracking satellites and ballistic objects. Orthometric heights (MSL heights) are seldom used as components
of a target state in a tracking algorithm. However, they are often used in atmospheric models and terrain
height models. For example, the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter
Radar 2000 (NRLMSISE-00) empirical atmospheric model3 described in [77,261] is parameterized in terms
of orthometric heights. Similarly, the Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010)
model provided for free online4 by the U.S. Geological Survey (USGS) and the NGA provides terrain
heights in terms of orthometric heights based on a geoid defined by the EGM96 gravitational model [63].
Terrain heights are important in target-tracking algorithms for predicting where ballistic objects will land
(Will it go over the mountain or run into the side of the mountain?), and for determining whether terrain is
obstructing the view of a target in a multistatic network. MSL heights are also used in the code released with
the Earth Magnetic Model 2010 (EMM2010) (See Table 2 for documentation and a link to the code). The
EMM2010 model is used in Sections 7 and 8.2, though implemented in a manner not using MSL heights.
Pressure altitudes are commonly reported by transponders on civilian aircraft, including the common mode
S transponder [151]. Geopotential heights are often used in atmospheric models. For example, the U.S.
Standard Atmosphere 1976 [240] uses an approximate geopotential height.

Today, it would be significantly more convenient for terrain elevation data to be given in ellipsoidal
heights when tracking in GTRS coordinates. However, prior to the use of satellites for measuring the
terrain, the elevation of the terrain was determined through the direct or indirect measurement of changes
in the gravitational potential on the ground [137, Ch. 4], [160], making elevations with respect to the
geoid the ones directly measured. Researchers still make use of traditional leveling techniques for height
determination to validate and augment newer GPS-aided techniques, such as when Chinese researchers
sought to more accurately determine the height of Mount Everest [46]. The use of gravitational potentials
for altitude measurements is unlikely to change for high-precision measurements as modern atomic clocks
have achieved sufficient accuracy that local variations in the geoid height can be measured to an accuracy of
1cm by comparing the rates of clocks in two different locations [33].

3The official Fortran release can be obtained from http://ccmc.gsfc.nasa.gov/modelweb/atmos/
nrlmsise00.html and an unofficial C-code release is available from http://www.brodo.de/space/nrlmsise/
.

4One can download the terrain elevation data from https://lta.cr.usgs.gov/earth explorer .

In many applications, only approximate values of orthometric height and geopotential height are used.

used. Using the EGM2008 mean-Earth ellipsoid with the additional parameters for the WGS 84 ellipsoid,
(30) produces a gravity potential on the geoid of

W EGM2008
0 “ 6.263685171456948 ˆ 107 m2

s2 . (52)

Note that the symbol W0 is used rather than U0. The difference in notation shall be explained shortly. The
gravity potential of the EGM2008 model is used to define the geoid in this report. However, different
applications use different definitions. For example, the U.S. Department of Transportation’s Standard for
Aeronautical Surveys and Related Products in the United States stipulates that orthometric heights shall be
referenced to the North American Vertical Datum of 1988 (NAVD 88) [333].

Given a definition of the gravity potential of the geoid, to determine the height of the geoid above the
reference ellipsoid using terrain and geopotential models, which is a necessary step in computing orthomet-
ric heights, one must first differentiate between the different potentials that are listed in Table 7. The gravity
potential W of the Earth at a particular point r “ rrx,ry,rzs1 in space under Newtonian mechanics is defined
to be

W ,

Gravitational
Potentialhkkikkj
V prq `

Centrifugal
Potentialhkkikkj
Wprq (53)

where V prq is the gravitational potential at r, which is given by the mass distribution of the Earth, and Wprq
is the potential due to the rotation of the Earth. All of the potentials have units of m2{s2, which is the same
as joules (energy) per unit mass in kilograms. Since the WGS 84 and ITRF standards set the z-axis of their
ECEF reference frames to be the axis of rotation of the Earth, the centrifugal potential is

Wprq “ 1
2

w

2
Jpr2

x ` r2
y q. (54)

The discussion in this section focuses on the potential of the Earth as expressed in Newtonian mechan-
ics. Though more theoretically sound relativistic geodesy techniques exist as discussed in [187, Ch. 8],
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Fig. 19: The DTM2006.0 terrain/bathymetric model plotted on a 2500 ˆ 2500 uniform grid in latitude and longitude. The model
provides terrain heights and bathymetric depths as orthometric heights. The tide-free EGM2008 geoid height was added to the
orthometric heights (Helmert’s projection) to obtain ellipsoidal heights with respect to the WGS 84 reference ellipsoid to plot. The
heights above the reference ellipsoid were exaggerated by a factor of 100 when plotted. At the current scale, an omission of the
geoid height correction would not have noticeably changed the plot. However, to use the data to a high precision, one must consider
the geoid height.

for example, they are complicated and Newtonian models appear to be the primary ones in use. The grav-
ity potential W is the negative of the potential energy per unit mass of an object rotating with the Earth.
Consequently, the gradient of the gravity potential is the gravity acceleration

g “—W prq (55a)

“—V prq ` w

2
J

»

—–
rx

ry

0

fi

�fl (55b)

where the gradient operator is defined in Cartesian coordinates as
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⇢1
. (56)

The ellipsoidal potentials U and U0 play an important role when one wishes to express geoid heights
in WGS 84 coordinates even though the reference ellipsoid defining MSL for the EGM2008 model uses
different values of the semi-major axis and flattening factors of the Earth. The ellipsoidal potential Uprq
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Table 7: Commonly Used Symbols for the Different Earth Gravitational Potentials
46 David Frederic Crouse

Symbol Name Description
W Gravity Potential Potential of an observer rotating with the Earth
V Gravitational Potential Potential of an observer not rotating with the Earth
W Centrifugal Potential Potential due to the Earth’s rotation
U Ellipsoid Potential Potential under an ellipsoidal-gravity model
W0 Geoid Potential Potential defining MSL
U0 Ellipsoid Surface Potential Potential on the surface of a reference ellipsoid
—V Gravitational Acceleration Acceleration due to gravity, not counting the Earth’s rotation.
g Gravity Acceleration Acceleration due to gravity, including the Earth’s rotation

Table 7: Commonly used symbols for the different potentials that one encounters when discussing the
gravitational field of the Earth. Many papers do not differentiate between the gravity acceleration and the
gravitational acceleration and use g for both. To avoid confusion, this report uses different symbols for

each.

(30) produces a gravity potential on the geoid of

W EGM2008
0 “ 6.263685171456948 ˆ 107 m2

s2 (52)

Note that the symbol W0 is used rather than U0. The difference in notation shall be explained shortly. The
gravity potential of the EGM2008 model is used to define the geoid in this report. However, different
applications use different definitions. For example, the U.S. Department of Transportation’s Standard for
Aeronautical Surveys and Related Products in the United States stipulates that orthometric heights shall be
referenced to the North American Vertical Datum of 1988 (NAVD 88) [335].

Given a definition of the gravity potential of the geoid, to determine the height of the geoid above the
reference ellipsoid using terrain and geopotential models, which is a necessary step in computing orthomet-
ric heights, one must first differentiate between the different potentials that are listed in Table 7. The gravity
potential W of the Earth at a particular point r “ rrx,ry,rzs1 in space under Newtonian mechanics is defined
to be

W ,

Gravitational
Potentialhkkikkj
V prq `

Centrifugal
Potentialhkkikkj
Wprq (53)

where V prq is the gravitational potential at r, which is given by the mass distribution of the Earth, and Wprq
is the potential due to the rotation of the Earth. All of the potentials have units of m2{s2, which is the same
as Joules (energy) per unit mass in kilograms. Since the WGS 84 and ITRF standards set the z-axis of their
ECEF reference frames to be the axis of rotation of the Earth, the centrifugal potential is

Wprq “ 1
2

w

2
Jpr2

x ` r2
y q. (54)

The discussion in this section focuses on the potential of the Earth as expressed in Newtonian mechan-
ics. Though more theoretically sound relativistic geodesy techniques exist as discussed in [187, Ch. 8],

Many papers do not differentiate between the gravity acceleration and the gravitational acceleration and
use g for both. To avoid confusion, this report uses different symbols for each.

is the gravity potential at a point r under a particular ellipsoidal-Earth model, as given by (51), and U0 is
the gravity potential on the surface of a specific ellipsoid as per (30). Usually, depending on the reference
ellipsoid chosen, U0 ‰ W0.

At a point r chosen to be outside of all of the mass of the Earth, the gravitational potential V due to the
Earth can be expressed in terms of spherical-harmonic coefficients [136, Ch. 1, 2] [29, Ch. 3.4].49 Though
the spherical-harmonic representation is not technically valid at points within the mass of the Earth, it is
usually assumed valid within the atmosphere. The gravitational potential of the Earth as represented by the
NGA’s EGM2008 standard is given as a set of normalized spherical-harmonic coefficients. The same is true
of the many other models listed by the ICGEM. The EGM2008 model is the recommended geopotential
model in the IERS conventions [257, Ch. 6] and in the current version of the WGS 84 standard [69, Ch. 5]
and it was shown to be the best available model based on laser satellite-tracking observations [307], though
a newer model might be more accurate [102]. The mathematics of using spherical-harmonic coefficients can
be difficult and are reviewed in Appendix F. It is worth noting that naı̈ve implementations of the harmonic
equations can lead to a loss of precision [140] or can result in numerical overflow or underflow problems.

The geoid is always within the mass of the Earth as it is always within the atmosphere, and is often
underground. In practice, the effects of the atmosphere are often neglected but the effects of terrain must
be taken into account, necessitating information on both the height and density of the terrain. A commonly
used technique for using gravitation and terrain models for determining the height of the geoid above a
reference ellipsoid is that of Rapp [269]. Rapp’s method assumes that the gravitational potential implied
by the reference ellipsoid by (30) is the same as the geoid potential W0. However, when using the geoid
potential given by (52) for the EGM2008 model with the WGS 84 ellipsoid, Rapp’s assumption is false.
Thus, a modified expression of Rapp’s method as given by Eq. 2-347 in [136, Ch. 2.17], as well as in [300],
corrects for using a reference ellipsoid with an implied surface potential different from that of the geoid.
The key equations for geoid height at point p, which might be expressed as pl ,fcq in spherical coordinates

49Note that even if the gravitational potential everywhere outside of a massive body is known, one can not directly infer the mass
distribution within the body. Additional information, such as seismic data, is necessary [136, Ch. 1.13].
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or as pf ,l q in ellipsoidal coordinates,50 when using the data provided with the EGM2008 model, are51

Np “zp ` Kp (57)

zp “Tp

gp
´ W0 ´Up

gp
(58)

where zp is the height anomaly on the surface of the reference ellipsoid, W0 is the defining gravity potential
of the geoid (for example, (52)), Up is the gravity potential on the surface of the reference ellipsoid at point
p as computed using (30), gp is the magnitude of the acceleration due to gravity at point p on the surface of
the reference ellipsoid using an ellipsoidal gravitational model via (39) or (49); that is,

gp , kg0k. (59)

The computation of g0 and U0 uses the value of GMJ that is associated with the reference ellipsoid, not the
value of GM that is used in the geopotential model, which might be different. The disturbing potential for a
point on the surface of the reference ellipsoid is given by Tp, which is defined as

Tp “ Wp ´Up (60)

where Wp is the gravity potential at point p as defined in (53). The disturbing potential Tp is often evaluated
by modifying the fully normalized even spherical-harmonic coefficients C̄n,m that are used to evaluate the
gravitational potential V . Such coefficients are described in Appendix F. As described in [300], the modified
spherical-harmonic coefficients to directly compute Tp are the same odd coefficients S̄n,m as are used to
compute V along with

C̄Tp
n,m “ C̄n,m ´ GMellipsoid

GMJ

ˆ
aellipsoid

aJ

˙n

C̄ellipsoid
n,m (61)

where GMJ and aJ are the the values of GM and the semi-major axis of the Earth as used by the gravitational
potential model (e.g., the values for the EGM2008 model) and GMellipsoid and aellipsoid are the same as those
used by the reference ellipsoid with which one wants the geoid undulation values (e.g., the values for the
WGS 84 model).52 The value C̄ellipsoid

n,m is a fully normalized spherical-harmonic coefficient for an ellipsoidal
gravitational model, which, as can be ascertained from [136, Ch. 2.5, 2.7–2.9], is given by multiplying C2k,0
in Eq. (F85) of Appendix F.4 by 1{

?
4k ` 1 for k • 0. Note that the values of C given in Appendix F.4 are

only for even values of Cn,m, hence the C2k,0 notation. Value of C for other subscripts can be assumed to be
zero.

Unlike as described in [300], the geoid height in (57) is not iteratively computed since the NGA has
provided a set of spherical-harmonic coefficients to convert from height anomalies on the reference ellip-
soid to geoid undulations. Kp is the z ´ to ´ N coefficient that the NGA provides at a site listed in Table

50The lack of a radius or ellipsoidal height is because the geoid height does not depend on elevation. For all evaluations, the
height is taken as 0, the surface of the reference ellipsoid.

51When using the older EGM96 gravitational model, the value of Kp obtained using the coefficients provided by the NGA is
scaled too large by a factor of 100. Thus, Eq. (57) would have Kp divided by 100 when using the older EGM96 model.

52In the NGA’s algorithm for evaluating geoid heights with the older EGM96 model, the F477 function at http://earth-
info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.html , it is approximated that the coefficients of C̄n,m are all
1. This approximation is dropped in the reference implementation of the EGM2008 geoid.
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2.53 The computation of Wp and Kp requires the evaluation of spherical-harmonic coefficients as described
in Appendix F. To understand the origin of the model and the assumptions that must have gone into the Kp
term, one is encouraged to consult [269] and [136, Ch. 2.17]. A large number of undocumented assump-
tions regarding the height and density of the land must have been used to obtain the spherical-harmonic
coefficients for Kp.

Based on the code and documentation on the NGA’s web site, it appears that the NGA uses the approxi-
mation that

zp « Tp

g

´C̄0,0
GMJ
grE

´ 0.41 (62)

where GMJ is the value of GM as used by the gravitational potential model, C̄0,0 is a fully normalized
spherical-harmonic coefficient as discussed in Appendix F, and rE is the distance from the center of the
Earth to point p on the surface of the reference ellipsoid, which can be found by taking the magnitude of
the Cartesian point obtained by using (20), (21), and (22) to convert the ellipsoidal point pf ,l ,0q (zero
ellipsoidal height) from ellipsoidal to Cartesian coordinates. The 0.41 constant assumes that everything
is expressed in SI units and represents an approximation to the second term in (58) plus the second term
in (62).54 The NGA approximation was used when plotting Fig. 19. The difference between the NGA
approximation and (58) when using the EGM2008 model is on the order of a few tenths of a centimeter, but
is larger when using the older EGM96 gravitational model.

Geoid heights above the reference ellipsoid vary from from a high of approximately `84m to a low
of ´107m. The values can be determined either by evaluating Np directly as described or by using the
precomputed geoid height values available from the NGA [240]. Consequently, the magnitudes of treating
orthometric heights as ellipsoidal heights, such as when using terrain elevation data, is close to the same
range.

The rigorous determination of orthometric heights is complicated by the presence of terrain and is de-
scribed in [327]. When orthometric height H in Fig. 17 of a point is found by correctly following the curved
plumb line from the geoid through any terrain up to the point, then one is discussing Pizzetti’s orthometric
height. On the other hand, when one simply uses the approximation that

H “ h ´ Ñ (63)

one is said to use Helmert’s orthometric height. The value Ñ is the geoid undulation at the latitude and
longitude of the point, whereas N is the geoid undulation at wherever following the curved plumb line down
from the point intersects the geoid. As discussed in [136, Ch. 5-2], the difference between Helmert’s and
Pizzetti’s orthometric heights is often negligibly small. As most applications using orthometric heights do
not require high precision, and rigorously determining orthometric heights can be difficult, techniques for
determining Pizzetti’s orthometric heights are not given in this report. In general, it is most convenient if
those designing target-tracking algorithms entirely avoid the use of orthometric heights and simply express
everything in terms of WGS 84 ellipsoidal or Cartesian coordinates.

53The NGA also provides precomputed tables of geoid undulations with interpolation software in Fortran.
54Under the older EGM96 model, the NGA used ´0.53 instead of ´0.41. As documented in the latest WGS 84 standard [69, Sec.

6.2], the discrepancy is due to an error in an oscillator drift correction in satellite-measured altimeter data underlying the EGM96
model.
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The discussion of orthometric heights thus far has assumed that “the” EGM2008 geopotential model is
used for geoid determination. However, the unique definition of the geoid requires both a defining potential
W0, as in (53), and a specification of the tide model. As noted in [77], different countries use different tide
models when defining orthometric heights. Orthometric heights are always defined without consideration to
the time-variant part of a tidal model. However, time-invariant effects of the Sun and the Moon, permanent
tides, also work to deform the Earth and change the gravity potential. The three permanent tide systems are
tide-free, zero-tide, and mean-tide. The various permanent tide systems are defined in Section 6 where the
effects of time-variant as well as time-invariant tides are analyzed.

The basic spherical-harmonic coefficients for the EGM2008 geopotential model (which lets one compute
V in (53)) and for the Kp terms to go from height anomaly to geoid undulations are given in a tide-free
geoidal model. The conversion of a geoid from a tide-free system to other tide systems requires the addition
of extra terms as discussed in Section 6.

5.3 Considering Pressure Altitudes

A pressure altitude is an altitude that is computed based on an air-pressure measurement and an at-
mospheric model. In the U.S., aircraft above 18,000ft (5484.6m) generally navigate based on pressure
altitudes that have been calibrated to a standard setting for air pressure and temperature at MSL. No air-
pressure model can perfectly match reality. However, when used in aviation, if all aircraft are using the
same incorrect model, they will experience the same model-based biases in altitude measurements and can
thus maintain a safe vertical separation. The use of air-pressure measurements as reported by Mode C
transponders in aircraft in the context of target tracking and sensor registration has been considered in [235].
In the U.S., the Federal Aviation Administration (FAA) stipulates [334] that altimeters in aircraft should
be tested using the 1976 U.S. Standard Atmosphere of [241]. The U.S. Standard Atmosphere is also valid
for civilian aviation outside of the U.S., because up to an altitude of 32km (which is above the ceiling of
current commercial jets), the U.S. Standard Atmosphere is identical to the standard atmosphere of the In-
ternational Civil Aviation Organization (ICAO), as noted in [8], where a number of atmospheric models
are contrasted. Many commercial atmospheric pressure sensors, such as that described in [8], use the U.S.
Standard Atmosphere to provide the user with an orthometric altitude reading.

For the purposes of target tracking using transponders, if one wants to use the altitude readings, one
must convert the standard pressure altitude used by the aircraft into an altitude that the tracker can use.
This generally means finding the actual air pressure measured by the aircraft from the reported altitude and
then putting the air-pressure measurement into a more accurate model. This section reviews the pressure
model of the U.S. Standard Atmosphere, so that one can extract air-pressure readings from transponder
data. Due to the preponderance of high-fidelity atmospheric models,55 no specific model is considered
for converting the aircraft’s air-pressure reading into an accurate height usable for tracking (such as an
ellipsoidal height). However, using the U.S. Standard Atmosphere with an accurate local altimeter setting
(rather than the standard one used above 18,000ft) can provide less-biased orthometric heights that can be
converted into a format usable in a tracking algorithm.

To use the U.S. Standard Atmosphere 1976 to compute an orthometric height from a pressure altitude or
vice versa, an intermediate conversion to a geopotential height is necessary, as the model below 86km alti-
tude is parameterized on geopotential heights. A geopotential height is essentially a gravitational potential

55Consider, for example, some of the models listed on NASA’s model web site at http://ccmc.gsfc.nasa.gov/
modelweb/ .
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difference divided by a standard acceleration due to gravity. It can be defined as

Hgp ,Wp ´W0

g0
(64a)

“ 1
g0

ª zp

0
gdZ (64b)

where Wp is the gravity potential of (53) at the target and W0 is the gravity potential on the reference surface,
typically on a specific definition of the geoid. The integral form of the geopotential height integrates from
an orthometric height of 0 (on the geoid) to the points, which is at an orthometric height zp. The magnitude
of acceleration due to gravity g depends on position. The integral is a path integral (there are multiple ways
to get from an orthometric height of 0 to zp), but the actual path taken does not matter, only the endpoints.
The dZ is a differential orthometric height. The U.S. Standard Atmosphere takes g0 “ 9.80665m{s2 as the
reference acceleration due to gravity.

The standard atmosphere uses a low-precision approximation of the conversion from orthometric heights
to geopotential heights. Using Newton’s law of universal gravitation, which one can find in most introduc-
tory physics textbooks, one can express the magnitude of acceleration due to gravity g at a height of h above
a spherical Earth with radius rJ as

g “ GMJ
prJ ` hq2 . (65)

Assuming that g0 is the acceleration due to gravity when h “ 0, multiplying both sides of (65) by the inverse
of the right side of Eq. (65), one obtains

g
ˆ

h2 ` 2hrJ ` r2
J

GMJ

˙
“1 (66a)

g
ˆ

h2

r2
Jg0

` 2h
ˆ

1
rJg0

˙
` 1

g0

˙
“1 (66b)

which can be solved to get

g “ g0r2
J

ph ` rJq2 , (67)

which no longer requires one to know GMJ. The standard atmosphere takes the radius of the spherical
Earth to be rJ “ 6,356,766m. Substituting the approximation of acceleration due to gravity of (67), into
the integral definition of geopotential height of (64b), one obtains the approximation

H « rJzp

rJ ` zp
(68)

The standard atmosphere uses (68) to convert between orthometric height zp of a point and geopotential
height H. However, some air-pressure sensors that provide height readings do not perform the conversion.
Since 86,000m orthometric height corresponds to 84,852m geopotential height, this can introduce a notable
bias at higher altitudes.
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Given the geopotential height H of a point, the standard air pressure for altitudes 86km and below, which
are relevant for general aviation, in units of pascals (N{m2) is

P “ Pb

$
’’’&

’’’%

ˆ
TM,b

TM,b ` LM,bpH ´ Hbq

˙ g0M0
R˚LM,b

If LM,b ‰ 0

exp
ˆ

´g0M0
H ´ Hb

R˚TM,b

˙
If LM,b “ 0

(69)

where R˚ “ 8.31432Nm{pmolKq is a 1962 standard value for the universal gas constant and M0 “ 28.9644ˆ
10´3 kg{mol is the mean molecular weight of the atmosphere at sea level. The values LM,b and TM,b are
constants that depend on the geopotential altitude H whose values are listed in Table 8 for different values
of b. The value of b is chosen such that Hb § H. In some areas, the land may lie a significant distance
below MSL. For example, the land around the Dead Sea between Israel and Jordan is between 700m and
730m below MSL, though it is rising by approximately 4mm per year due to the crust rebounding after
water loss [244]. The standard says that the atmospheric pressure model is valid down to 5km below MSL.
The pressure Pb is the air pressure at geopotential height Hb. Given Pb, one can find Pb`1 by using (69) at b
with H “ Hb`1. The model is parameterized on P0 and T0, the air pressure and temperature at MSL. Local
pressure and temperature settings that are above sea level can be extrapolated back down to sea level using
the model and knowing the orthometric height of the observer.

Table 8: Constants for Air Pressure and Orthometric Altitude Conversion
29

[235]. In the U.S., the Federal Aviation Administration (FAA)
stipulates [336] that altimeters in aircraft should be tested
using the 1976 U.S. Standard Atmosphere of [240]. The U.S.
Standard Atmosphere is also valid for civilian aviation outside
of the U.S., because up to an altitude of 32 km (which is above
the ceiling of current commercial jets), the U.S. Standard
Atmosphere is identical to the standard atmosphere of the
International Civil Aviation Organization (ICAO), as noted in
[9], where a number of atmospheric models are contrasted.
Many commercial atmospheric pressure sensors, such as [9],
use the U.S. Standard Atmosphere to provide the user with
their altitude.

For the purposes of target tracking using transponders, if
one wants to use the altitude readings, one must convert the
standard pressure altitude used by the aircraft into an altitude
that the tracker can use. This generally means finding the
actual air pressure measured by the aircraft from the reported
altitude and then putting the air-pressure measurement into
a more accurate model. This section reviews the pressure
model of the U.S. Standard Atmosphere, so that one can
extract air-pressure readings from transponder data. Due to
the preponderance of high-fidelity atmospheric models,52 no
specific model is considered for converting the aircraft’s air-
pressure reading into an accurate height usable for tracking
(such as an ellipsoidal height). However, using the U.S.
Standard Atmosphere with an accurate local altimeter setting
(rather than the standard one used above 18, 000 ft) can provide
less-biased orthometric heights that can be converted into a
format usable in a tracking algorithm.

To use the U.S. Standard Atmosphere 1976 to compute
an orthometric height from a pressure altitude or vice versa,
an intermediate conversion to a geopotential height is nec-
essary as the model below 86 km altitude is parameterized
on geopotential heights. A geopotential height is essentially
a gravitational potential difference divided by a standard
acceleration due to gravity. It can be defined as

Hgp ,Wp ´ W0

g0
(64a)

“ 1

g0

ª zp

0
gdZ (64b)

where Wp is the gravity potential of (53) at the target and
W0 is the gravity potential on the reference surface, typically
on a specific definition of the geoid. The integral form of the
geopotential height integrates from an orthometric height of 0
(on the geoid) to the points, which is at an orthometric height
zp. The magnitude of acceleration due to gravity g depends on
position. The integral is a path integral (there are multiple ways
to get from an orthometric height of 0 to zp), but the actual
path taken does not matter, only the endpoints. The dZ is a
differential orthometric height. The U.S. Standard Atmosphere
takes g0 “ 9.80665 m{s2 as the reference acceleration due to
gravity.

The standard atmosphere uses a low-precision approxima-
tion of the conversion from orthometric heights to geopotential

52Consider, for example, some of the models listed on NASA’s model web
site at http://ccmc.gsfc.nasa.gov/modelweb/ .

b Hbpmq LM,bpK{mq TM,bpKq
0 0 ´6.5 ˆ 10´3 288.150

1 11000 0 TM,0 ` LM,0pH1 ´ H0q “ 216.650

2 20000 1 ˆ 10´3 TM,1 “ 216.650

3 32000 2.8 ˆ 10´3 TM,2 ` LM,2pH3 ´ H2q “ 228.650

4 47000 0 TM,3 ` LM,3pH4 ´ H3q “ 270.650

5 51000 ´2.8 ˆ 10´3 TM,4 “ 270.650

6 71000 ´2.0 ˆ 10´3 TM,5 ` LM,5pH6 ´ H5q “ 214.650

7 84852 0 TM,6 ` LM,6pH7 ´ H6q “ 186.946

TABLE VIII
CONSTANTS NEEDED TO CONVERT BETWEEN AIR PRESSURE AND

ORTHOMETRIC ALTITUDE USING THE U.S. STANDARD ATMOSPHERE 1976
MODEL UP TO 86 KM ALTITUDE. THE NUMERICAL VALUES FOR TM,b

HAVE NOT BEEN ROUNDED NOR TRUNCATED.

heights. Using Newton’s Law of Universal Gravitation, which
one can find in most introductory physics textbooks, one can
express the magnitude of acceleration due to gravity g at a
height of h above a spherical Earth with radius rJ as

g “ GMJ
prJ ` hq2 . (65)

Assuming that g0 is the acceleration due to gravity when h “
0, multiplying both sides of (65) by the inverse of the right
side of 65, one obtains

g

ˆ
h2 ` 2hrJ ` r2

J
GMJ

˙
“1 (66a)

g

ˆ
h2

r2
Jg0

` 2h

ˆ
1

rJg0

˙
` 1

g0

˙
“1 (66b)

which can be solved to get

g “ g0r2
J

ph ` rJq2 , (67)

which no longer requires one to know GMJ. The standard
atmosphere takes the radius of the spherical Earth to be
rJ “ 6, 356, 766 m. Substituting the approximation of accel-
eration due to gravity of (67), into the integral definition of
geopotential height of (64b), one obtains the approximation

H « rJzp

rJ ` zp
(68)

The standard atmosphere uses (68) to convert between ortho-
metric height zp of a point and geopotential height H . How-
ever, some air-pressure sensors that provide height readings
do not perform the conversion. Since 86, 000 m orthometric
height corresponds to 84, 852 m geopotential height, this can
introduce a notable bias at higher altitudes.

Given the geopotential height H of a point, the standard air
pressure for altitudes 86 km and below, which are relevant for
general aviation, in units of Pascals (N{m2) is

P “ Pb

$
’’’&

’’’%

ˆ
TM,b

TM,b ` LM,bpH ´ Hbq

˙ g0M0
R˚LM,b

If LM,b ‰ 0

exp

ˆ
´g0M0

H ´ Hb

R˚TM,b

˙
If LM,b “ 0.

(69)

The constants are for the U.S. Standard Atmosphere 1976 model up to 86km
altitude. The numerical values for TM,b have not been rounded nor truncated.

Figure 20 plots altitude as a function of air pressure in the U.S. Standard Atmosphere 1976. The pressure
P0 and temperature T0 at MSL, which define the model, were taken to be the standard pressure and tempera-
ture used by aircraft over 18,000ft altitude in the United States, a pressure of 101,325Pa and a temperature
of 288.15K (15˝C) [335].56

56The FAA’s aeronautical information manual lists the standard air pressure as 29.92 inches of mercury, which depending on the
chosen temperature and altitude of the sensor, is not precisely 101,325Pa. However, 101,325Pa is the generally used conversion.
The National Institute of Standards and Technology (NIST) lists multiple standard conversions from inches of mercury to pascals
on their site at http://physics.nist.gov/Pubs/SP811/appenB9.html . Inches of mercury should generally not be
used to specify pressures as it is ambiguous and archaic.
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Fig. 20: The orthometric height as a function of air pressure in the U.S. Standard Atmosphere 1976 using standard temperature and
pressure at MSL. The pressure scale is logarithmic.

5.4 Gravitational Models and the Local Vertical

A frequently used local coordinate system in target-tracking systems is the ENU system. The coordinate
system can be useful as one can approximate ellipsoidal “up” by the gravitational vertical and North using a
gyrocompass, though more accurate results are theoretically possible using stars. As mentioned in Section
8.1.1, given at least two vectors in multiple coordinate systems, one can easily find the rotation matrix
between the systems. Section 4.2 discusses the ENU coordinate system in terms of coordinates on the
reference ellipsoid. However, if one assumes that the local ellipsoidal vertical coincides with the vertical
implied by the reference ellipsoid, one loses precision. This section quantifies how much the non-ellipsoidal
nature of the Earth can matter. The ability to relate the gravitational vertical direction to a global coordinate
system can play an important role in the design of inertial-navigation devices. For example, in [193], the
navigation error of an inertial measurement unit (IMU) operating using various gravitational models is
investigated. It is shown that the best models offer horizontal-position accuracies better than 5m after a
period of 53 minutes. A similar analysis performed with respect to moving vehicles on land is in [191],
where it is noted that the navigation errors can be reduced if the vehicle periodically stops and recalibrates
its “motion-free” gravitational acceleration.

Using the EGM2008 zero-tide spherical-harmonic gravitational model and the method of Appendix F
for utilizing such models, Fig. 21 plots the bias in the magnitude and direction of the gravity-acceleration
vector as obtained using the WGS 84 reference ellipsoid versus using the zero-tide EGM2008 model. An
altitude of 9km is used as it is above all terrain albeit still in the atmosphere. The angular distance between
two vectors v1 and v2, determining the direction of the vertical in both models, was determined using the
cross-product relation

q “ arctanpkv1 ˆ v2k,v1 ¨ v2q (70)
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rather than the simpler dot product relation

q “ arccos
ˆ

v1 ¨ v2

kv1kkv1k

˙
(71)

as it was observed (most notably in Section 6 when considering the effects of tides) that the cross-product
formulation is more robust to numerical precision limitations.
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Fig. 21: The difference in the magnitude (a) and the angle (b) between the gravity-acceleration vector g under the EGM2008
zero-tide model and the WGS 84 ellipsoidal model using the parameters of Table 5 and Eq. (39) for the acceleration vector under
an ellipsoidal gravitational model for points 9km above the reference ellipsoid. One milliGal (mGal) is equal to 1 ˆ 10´5 m{s2.
The points were evaluated on a 2500 ˆ 2500 grid of points in latitude and longitude. As noted in [28, Ch. 3.8], the gravitational-
acceleration differences of (a) will tend to bias the prediction of a low-Earth orbiting satellite by approximately 3.5km after one
day.

The directional bias of the vertical direction according to the EGM2008 model in Fig. 21 is observed
to exceed 50 arcseconds. This is line with with [87], which notes that the deflection of the vertical can be
as high as 70 arcseconds. While probably insignificant when performing radar tracking of aircraft, such an
angular bias can be significant when trying to perform high-precision optical tracking of space debris. The
acceleration biases compared to using the ellipsoidal model in Fig. 21 appear to be quite small. However,
they are many orders of magnitude larger than the highest reported 3D accelerometer accuracy, which is
on the order of 9.8 ˆ 10´13 m{s2 [279].57 Also, as quantified in [28, Ch. 3.8], ignoring higher order terms
of the gravitation model can lead to errors in the direction of motion of a low-Earth orbital object on the
order of 3.5km after one day, which is likely to be significant when tracking orbital debris. Both [28, Ch.

57The citation [279] refers only to the numbers reported in a very long abstract. The actual paper as well as the complete
conference proceedings appear to be unobtainable.
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3.8] and [234, Ch. 3.1] quantify the magnitudes of the effects of various forces on satellites. In [234, Ch.
3.1], it is noted that a constant radial gravitational-acceleration bias of 10´8 m{s2 changes the semi-major
axis of the orbital ellipse of a geostationary satellite by approximately 1m. Note, however, that acceleration
contribution due to the Sun and Moon are on the order of 10´8 m{s2 to 10´9 m{s2, as noted in [234, Ch. 3.1]
and verified for the Moon in Section 6.3.

If one wishes to use measurements of the gravitational vertical for orientation estimation, as an input in
a dynamic model in a target-tracking algorithm, or in an inertial-navigation unit, it is generally desirable to
have covariance matrices expressing the accuracy of the model. The EGM2008 model comes with standard-
deviation terms for all of the coefficients in the model. Using the method of Appendix F.3, one can find
a covariance matrix for the gravitational-acceleration vector implied by the EGM2008 model at any point.
Figure 22 plots the average bias in the magnitude of acceleration due to gravity and the bias in the direction
of the vertical implied by the standard deviations of the spherical-harmonic coefficients in the EGM2008
model. In [134], the vertical deflection error of the EGM2008 model is analyzed in the mountains of Bavaria
and Switzerland. The RMS empirical accuracy of the model is observed to be as high as 4.19 arcseconds,
which is larger than the magnitude of the error predicted in Fig. 22, though one would expect errors in
the mountains to be higher than elsewhere. In [159], the magnitudes of various approximations used in the
deflection of the vertical calculations, such as truncating the spherical-harmonic series or using different
permanent tide system, are quantified.
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Fig. 22: The average bias of the gravity-acceleration vector (a) and the direction of the vertical (b) as implied by the standard-
deviation terms that come with the zero-tide EGM2008 gravitational model evaluated on a 256 ˆ 256 grid in latitude and longitude
at 9km altitude. The method of Appendix F.3 was used to obtain covariance matrices for the acceleration vector due to gravity at
each point. Then, Monte Carlo simulation of the errors assuming additive Gaussian noise was performed to determine the expected
vertical bias. At 60˝ latitude (the latitude of southern Greenland), the acceleration bias is on the order of 17mGal and the vertical
orientation bias is on the order of 2 arcseconds. The errors are larger than the commission errors plotted in [252]. The results
become worse near the poles. The plots only go up to ˘85˝ latitude, due to numerical issues discussed in Appendix F.3. The issues
can be avoided by using quadruple precision instead of double-precision floating-point numbers.
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The average biases in Fig. 22 were determined through Monte Carlo simulation. Given the covari-
ance matrix of gravitational acceleration S—V , as well as the nominal gravity-acceleration vector based on
the EGM2008 model g at a particular point, noisy samples of the gravity-acceleration vector were drawn
assuming that they were normally distributed. That is,

gsamp “ g ` S
1
2
—V w (72)

where w is a 3 ˆ 1 standard N t0,Iu random vector and the matrix square root is meant to be a lower-
triangular Cholesky decomposition, which is chol(Sigma,’lower’) in Matlab and which can be
implemented using the algorithm of [111, Ch. 4.2].58 The noise could be added directly to the gravity-
acceleration g rather than the gravitational acceleration, since they differ by only an additive constant. The
deflection of the vertical was computed using (71) with gsamp and g as v1 and v2 for each random sample and
the results were then averaged. The bias in gravity-acceleration was computed by averaging the magnitude
of kg ´ gsampk.

The gravitational model considered in this section is time-invariant. Section 6 discusses time-invariant
and time-variant tide models and quantifies the magnitude of the error in the vertical direction estimate due
to time-varying tides. It is demonstrated that the vertical direction error due to time-variant tides is far less
than the precision of the vertical in the EGM2008 model, as plotted in Fig. 22.

58Strictly speaking, as noted in [111, Ch. 4.2.4], the Cholesky decomposition is not a matrix square root, though it is often called

one. Note that if S
1
2
—V is the Cholesky decomposition of S—V , then S—V “ S

1
2
—V

ˆ
S

1
2
—V

˙1
and usually S—V ‰ S

1
2
—V S

1
2
—V .
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6. THE EFFECTS OF TIDES ON COORDINATE SYSTEMS

6.1 Why Tides Can Matter

The oceans and crust of the Earth are constantly in motion. Many are familiar with the diurnal to
semidiurnal ebb and flow of ocean tides, which can be quite large. For example, the largest observed mean
range of tides is at Burntcoat Head, Minas Basin, Bay of Fundy, Nova Scotia, where the difference between
mean high-tide and mean low-tide water levels is 38.4ft (« 11.7m) [42]. However, the crust of the Earth
moves due to the effects of tides as well. While tides might initially appear to be rather irrelevant to those
designing target-tracking algorithms, the motion of the ground due to tides can be larger than the precision
of sensors for laser tracking of satellites. For example, laser detection and tracking of orbital debris has been
demonstrated [3,182], producing monostatic range detections of 0.7m RMS accuracies for targets less than
0.3m2 [183]. The IERS conventions have set an accuracy goal for satellite laser ranging to a millimeter-
level accuracy [257, Ch. 9.1.3]. In contrast, the total variation in the position of the ground over time due to
solid-Earth tides can be on the order of 30cm. This is shown in Fig. 23, where the offset of the ground due
to solid-Earth tides using the models described in the caption is plotted. Consequently, one cannot simply
localize a receiver in an ECEF coordinate system, such as the ITRF, once and never update the position.
Rather, the location of the receiver must be updated constantly during the day.
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Fig. 23: The magnitude of the Cartesian offset of the ground due to solid-Earth tides on 12 June 2012 at 14:00 UTC without
the permanent tide, plotted on a 1000 ˆ 1000 grid in latitude and longitude, using the model described in the IERS conventions
[257], not including ocean and atmospheric loading effects. The IERS provides a reference implementation in Fortran called
dehanttideinel, which can be obtained from a link in Table 2. As the direction changes over time, the total displacement over
time is actually on the order of 30cm. The algorithms in the included subroutines step2diu and step2lon, which provide tidal
corrections due to mantle anelasticity in the diurnal and long-period bands respectively, are not completely documented in the IERS
conventions. The necessary Moon and Sun direction vectors were obtained using the DE430 ephemerides, which were read using
the cspice spkezr function in NASA’s SPICE toolkit for Matlab (see Appendix I). Time-conversion routines from the IAU’s
SOFA library were also used.
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Due to the periodic tidal motion of the ground, when using a GNSS receiver to localize a sensor for
tracking, one must know the specific algorithms for tidal compensation, if any. For example, the data pro-
cessing routines in the European Space Agency’s book on GNSS data processing contain models for the
motion of ground due to tides [320, Ch. 5.7]. Solid-Earth tide estimation routines are included in the soft-
ware accompanying the book,59 allowing one to provide a user their location on the Earth in coordinates
that (ideally) do not drift over time due to tidal effects. Similarly, when one examines the source code of the
open-source GPS Toolkit, which is described in [120],60 one sees that code for solid-Earth tide corrections is
also present. However, when performing high-precision tracking of orbital objects, the actual time-varying
ECEF location of the receiver is generally desired, in which case, one will not want to use a GPS receiver
that provides coordinates that do not change over time due to tides. Minute variations in the displacement of
the ground over moderate distances have proven significant in numerous other high-precision applications.
For example, the motion of the ground due to tides matters when considering the calibration of large par-
ticle accelerators. In such an application, relative displacements less than the size of a human hair can be
significant [287].

When considering target tracking, tides affect more than just the location of a sensor in a global co-
ordinate system. One must understand the basics of tidal models to properly use high-precision gravita-
tional models, which are provided in terms of varying permanent tide systems. Knowledge-based target
identification can utilize a wide variety of parameters about the environment in which a target is being de-
tected [109, Ch. 9]. For example, a ship detected in a region where the current water level is low must have
a shallow draft or have run aground. If the ship is moving in the shallow region, it cannot be any type of
ship with a deep draft.

The development of numerical tide models, as described in [171], is extremely complicated. Figure 24
provides an overview of many of the international organizations that play various roles in the development
of tidal models. One designing target-tracking algorithms does not necessarily need to know how such
models are developed, but must understand the terminology surrounding tide models and should know how
significant tidal effects are. The following sections provide an overview of the terminology and models
surrounding the effects of tides when considering the motion of the ground and sea as well as when using
gravitational models.

6.2 Tides in Terms of Ground and Ocean Motion

Table 9 lists a number of terms that arise when discussing the motion of the ground, sea, and atmosphere
due to tidal forces. The periodic motion of the ground due to tides is not the same thing as an earthquake.
Whereas the magnitude 9.0 earthquake off the Pacific coast of Tohoku, Japan in 2011, which lasted ap-
proximately 180s, had peak ground acceleration up to 3 times acceleration due to gravity [101, Fig. 3],
solid-Earth tides are the slow daily motions of the ground due to external tidal forces. The total motion of
the sea surface and/or ground due to time-variant tides is often decomposed into many parts. Whereas Fig.
23 in the previous section showed the motion of the ground due to solid-Earth tides, the total motion of the
ground due to tides involves a number of other tidal components. Table 0.1 in the IERS conventions quan-
tifies the magnitudes of the effects of many tidal components beyond solid-Earth tides, with ocean loading
being on the order of centimeters, atmospheric loading millimeters, the ocean pole tide on the order of 2cm

59The book as well as the accompanying software CD can be downloaded from the European Space Agency’s Navipedia web
site at http://www.navipedia.net/index.php/GNSS:Tools .

60The source code for the GPS Toolkit can be obtained on the web site http://www.gpstk.org/ .
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Fig. 25. A subset of the tangled web of international organizations that play a role in monitoring and modeling tides. This includes both gravitational models
as well as models for the physical motion of the Earth. No one organization can be viewed as a definitive source of tidal information. Rather one must
often draw data and models from multiple sources. Numerous other organizations, such as the International Hydrographic Organization (IHO), play various
additional roles in mapping the sea surface and floor and in monitoring tides.

system, such as the ITRF, once and never update the position.
Rather, the location of the receiver must be updated constantly
during the day.

Due to the periodic tidal motion of the ground, when using
a GNSS receiver to localize a sensor for tracking, one must
know the specific algorithms for tidal compensation, if any. For
example, the data processing routines in the European Space
Agency’s book on GNSS data processing contain models for
the motion of ground due to tides [320, Ch. 5.7]. Solid-
Earth tide estimation routines are included in the software
accompanying the book,56 allowing one to provide a user their
location on the Earth in coordinates that (ideally) does not drift
over time due to tidal effects. Similarly, when one examines
the source code of the open-source GPS Toolkit, which is
described in [121],57 one will see that code for solid-Earth tide
corrections is also present. However, when performing high-
precision tracking of orbital objects, the actual time-varying
ECEF location of the receiver is generally desired, in which

56The book as well as the accompanying software CD can be down-
loaded from the European Space Agency’s Navipedia web site at http:
//www.navipedia.net/index.php/GNSS:Tools .

57The source code for the GPS Toolkit can be obtained on the web site
http://www.gpstk.org/ .

case, one will not want to use a GPS receiver that provides
coordinates that do not change over time due to tides. Minute
variations in the displacement of the ground over moderate
distances have proven significant in numerous other high-
precision applications. For example, the motion of the ground
due to tides matters when considering the calibration of large
particle accelerators, where relative displacements less than
the size of a human hair can be significant [287].

When considering target tracking, tides affect more than
just the location of a sensor in a global coordinate system.
One must understand the basics of tidal models to properly
use high-precision gravitational models, which are provided
in terms of varying permanent tide systems. Knowledge-based
target identification can utilize a wide variety of parameters
about the environment in which a target is being detected [110,
Ch. 9]. For example, a ship detected in a region where the
current water level is low must have a low draft or have run
aground. Consequently, if the ship is moving in the shallow
region, it cannot be any type of ship with a low draft.58

The development of numerical tide models, as described
in [171], is extremely complicated. Figure 25 provides an

58If the ship is not moving, it might have a low draft or it might have a
high draft and have run aground.

Fig. 24: A subset of the tangled web of international organizations that play a role in monitoring and modeling tides. This includes
both gravitational models and models for the physical motion of the Earth. No one organization can be viewed as a definitive
source of tidal information. Rather one must often draw data and models from multiple sources. Numerous other organizations,
such as the International Hydrographic Organization (IHO), play various additional roles in mapping the sea surface and floor and
in monitoring tides.

radially and in millimeters tangentially, and the ocean-pole-tide loading on the order of 2mm radially and
less than 1mm tangentially [257, Ch. 0.2]. Additionally, sea levels can be affected by wind as well as
the inverse barometric effect, which as discussed in [116, 217]. The inverse barometric effect explains the
difficult-to-model phenomenon that local sea levels rise when the local barometric pressure drops.

Global models for the displacement of points for ocean loading are very complex and include Some Pro-
grams for Ocean-Tide Loading (SPOTL) available at http://igppweb.ucsd.edu/˜agnew/Spotl/
spotlmain.html and the programs olfg and olgg available at the links on the web site http://
holt.oso.chalmers.se/loading/faq.html . Various tidal-loading models are compared in [254].
The IERS conventions describe models for pole tides and atmospheric loading [257, Ch. 7]. Many tidal
models, both for the motion of the ground as well as for changes in Earth geopotential models, decompose
tidal components into sets of periodic values with periods that are proportional to the duration of lunar and
solar effects [281]. The coefficients for the periodic terms are generally called Doodson parameters, which
stem from Doodson’s harmonic development of the tidal generating potential [72].
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Table 9: Commonly Used Terminology Relating to Time-Variant Tides that Move the Sea Surface and Ground
35

Term Definition
Elastic Ocean Tide/
Geocentric Ocean Tide The sum of the ocean tide and the radial load tides.

Ocean Tide The vertical displacement of the ocean above the sea floor (which moves) due to time-variant tides.
Ocean Loading The vertical displacement of the ground due to the weight of the ocean moving due to time-variant tides.

The vertical displacement of the ground due to the weight of the atmosphere moving due to time-variantAtmospheric Loading tides.
Solid-Earth Tide The motion of the ground due to tidal forces, not including the effects of ocean and atmospheric loading.
Radial-Load Tides The combined effect of ocean and atmospheric loading as well as the solid-Earth tides.
Radiational Tide The motion of the crust, oceans, and atmosphere due to heating from the Sun.
Pole Tide/ Polar Motion A change in the direction of the Earth’s figure axis (the figure axis is defined in Appendix E).
Solid Earth Pole Tide Motion of the ground due to the centrifugal effects of changes in the Earth’s figure axis.
Ocean-Pole-Tide Loading An offset in the location of points due to the motion of the oceans resulting from the pole tide.
Dynamic Topography/
Dynamic Sea-Surface Topography/ The true height of the sea surface with respect to the geoid; that is, the orthometric sea-surface height.
Absolute Dynamic Topography/ It is the sum of the elastic ocean tide and the mean dynamic topography (and possibly the radiational tide).
Sea-Surface Topography/ Sometimes, the terms are used to (ambiguously) mean the mean dynamic topography.
Ocean-Surface Topography/
Mean Dynamic Topography/ The (nearly) time-invariant part of the dynamic topography.
Quasi-Stationary Sea Surface Does not include seasonal variations, non-permanent winds, eddies.
Topography (QSST) Does include permanent currents, circulation linked to the Earth’s rotation, permanent winds.

The height of the sea surface with respect to the reference ellipsoid.Sea-Surface Height (SSH) SSH “ MSS ` SLA
The ellipsoidal height of the mean dynamic topography. Approximately, the geoid height plus the meanMean Sea Surface (MSS) dynamic topography

Sea-Level Anomaly (SLA)/
Sea-Surface Height Anomaly (SSHA) The height of the sea surface above the MSS.

A mean sea level anomaly (sometimes just referred to as an SLA, lending confusion to the previous
definition of the SLA), as defined by the NOAA [44], occurs when the 5-month runningMean Sea-Level Anomaly
average of the interannual variation is at least 0.1 m greater than or less than the long-term trend.
The monthly MSL after the trend (increasing/decreasing over time) and the average seasonalInterannual Variation cycle are removed.

Sea-State Bias/
Electromagnetic Bias A bias in altimeter ranging to the sea surface due to wave troughs reflecting more energy than wave crests.

An aliasing problem in tidal estimation when the revisit period of an altimeter satellite is too low toTidal Aliasing observe high-frequency periodic tidal components.
Inverse Barometric Effect The observation that tides are higher on the order of 1 cm when atmospheric pressure goes down 1 mbar.

TABLE IX
COMMONLY USED TERMINOLOGY RELATING TO TIME-VARIANT TIDES THAT MOVE THE SEA SURFACE AND GROUND AS INFERRED FROM COMMON

USAGE IN MANY PAPERS.

Term Definition
The potential of the Earth if no other bodies existed in space. Changes over time are due to Earth mechanics,Non-Tidal Potential such as volcanism.
The potential due to the deformation of the Earth’s crust by other celestial bodies (Sun, Moon, etc). There areIndirect Tidal Potential time-invariant as well as time-variant parts.
The time-variant and invariant gravitational potential due entirely to other celestial bodies, almost alwaysDirect/External Tidal Potential computed with respect to an observer accelerating with the Earth through space.
The apparent change in gravitational potential experienced by a stationary observer on a rotating EarthCentrifugal Potential compared to an observer on a theoretical non-rotating Earth.

Tide-Free/Non-Tidal System A system influenced only by the non-tidal potential.
Zero-Tide System A system influenced only by the non-tidal potential and the permanent indirect-tidal potential.
Mean-Tide System A system influenced only by the non-tidal potential and the permanent direct-and-indirect-tidal potentials.
Permanent Tide Contributions to the tidal potential (or the shape of the Earth) that are time-invariant.

Indirect tidal-potential contributions due to the deformation of the non-oceanic (or any water) and atmosphericSolid-Earth Tide parts of the Earth. Sometimes, direct tidal potentials are included.
Ocean Tide The indirect tidal-potential contribution due to the movement of water in the oceans.

Changes in the orientation of mass within the Earth leading to a change in the Earth’s figure axis, which changesPole Tide/ Polar Motion acceleration due to gravity with respect to fixed points on the crust.
A time-variant solid-Earth tidal potential arising from the motion of the Earth’s figure axis with respect to the ITRSSolid Earth Pole Tide (polar motion), presumably due to motions in the Earth’s core and mantle with respect to the crust.

Ocean Pole Tide A time-variant tidal potential due to the motion of the ocean as a result of the centrifugal effect of polar motion.
TABLE X

DEFINITIONS OF THE DIFFERENT TIDAL POTENTIALS, TIDE SYSTEMS, AND TIDES. THE DEFINITIONS ARE BASED ON INFORMATION IN [257], [298],
[299].

The definitions have been inferred from common usage in many papers.

The tidal models discussed in the IERS conventions are specified in terms of a tide-free permanent
tide model. Permanent tides are time-invariant theoretical tidal deformities of the Earth that arise due to
theoretical modeling of how the Earth deforms in the presence of other bodies in the solar system (permanent
tides are discussed in the following section). As noted in [320, Ch. 5.7.1], the tide model under which the
ground displacements are taken can be changed by adding constant latitude-dependent offsets to the time-
variant tidal offsets. Such offsets change the locations of points on the Earth if one attempts to take raw
GNSS positions and reduce them to time-invariant locations, which is desirable when making or using
maps, but which is not desirable when localizing a sensor for high-precision tracking. As sensors can often
use filtered real-time GNSS signals to monitor their positions in a global ECEF coordinate system without
directly using tidal models, the modeling of the motion of the solid ground due to tidal effects is not further
considered in this report.

The geoid is often synonymous with the concept of MSL: a surface of equal gravitational potential to
which the Earth’s oceans would rest in the absence of time-variant tides, under a certain permanent tide
definition. However, the true definition of MSL and the ocean sea surface is somewhat more complicated
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due to semi-permanent currents in the oceans. Just as swirling water around in a cup makes the water at
the sides of the cup higher than the water in the center of the cup, the motion of water in the oceans causes
some parts of the ocean to be constantly higher than others after compensating for tidal effects. The quasi-
stationary sea-surface topography (QSST) is the mean distance between the actual surface of the sea and the
geoid after time-variant tides have been removed. As plotted in [196], the maximum difference between the
high and low values of the QSST worldwide is approximately 2m. In [252], it is plotted as approximately
3m. To put this in context, the World Meteorological Organization defines sea-state codes on a scale from 1
to 9, where waves having a height of 2m fall into sea states 4 and 5, which is moderate to rough seas [362, Pg.
326]. On the Beaufort scale of wind, such waves are typical when the wind 10m above the ground is about
8m{s to 10.7m{s. Consequently, without detailed, high-resolution, real-time oceanic wave measurements,
it is unlikely that QSST will matter when predicting ahead trajectories of ships at sea. Indeed, in extreme
conditions, the difference between the geoid and the mean sea surface can be very large. For example, the
highest reported wave height appears to be 112ft (« 34.14m) reported by the USS Rampao on 7 February
1933 during winds of 60kt (« 31m{s) [360].61

6.3 Tides in Terms of the Gravitational Field

Table 10 defines a number of terms that are important for describing the effects of tides when discussing
the effects of tides with respect to gravitational models. The gravitational potential models discussed in
Sections 5 and 5.4 are defined in terms of various permanent tide systems. Permanent tides are time-invariant
distortions of the Earth’s shape and gravitational potential resulting from the presence of other bodies in the
solar system. Gravitational potential models, and thus geoids, are generally defined in terms of one of three
permanent tide models, tide-free, zero-tide, and mean-tide systems, onto which time-variant components
can be added. This section explains the difference between the tidal models, and demonstrates that the
direct tidal contribution as well as all time-variant tidal contributions can usually be ignored in algorithms
for determining the vertical direction of an observer on the ground, as the effects are an order of magnitude
smaller than the precision of the zero-tide EGM2008 model.

In a tide-free system, the gravitational potential V of a point in an ECI coordinate system is computed
based on the shape that the Earth would be if the Earth were the only object in space (the external potential
[direct tidal potential] has been removed) and all time-variant and time-invariant tidal effects were removed.
The tide-free model can only be computed based upon models of the elasticity of the Earth; it cannot
be directly observed. The zero-tide system computes the gravitational potential of an observer in an ECI
coordinate system based on the mass distribution of the true shape of the Earth after time-variant components
and the external potential have been removed. Consequently, the zero-tide model is the best choice to use
when one wishes to consider the gravitational effects of the Earth independent of other bodies in the solar
system without regard to time-variant tides.

The mean tidal model is the zero-tide model with the direct tidal potential added. The direct tidal
potential is the apparent change in potential experienced by an observer in an ECI or ECEF coordinate
system due to the physical presence of bodies other than the Earth. To understand this, consider a coordinate
system whose origin is at the Newtonian center of mass of a system containing N bodies. In an arbitrary

61That is the highest reported wave not caused by a seismic disturbance. The highest tsunami wave appears to have been a
1720ft (« 524m) wave in Lituya Bay on the northeast shore of the Gulf on Alaska on 9 July 1958 caused by a rockslide into the
bay resulting from an earthquake [228].
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Table 10: Definitions of the Different Tidal Potentials, Tide Systems, and Tides

35

Term Definition
Elastic Ocean Tide/
Geocentric Ocean Tide The sum of the ocean tide and the radial load tides.

Ocean Tide The vertical displacement of the ocean above the sea floor (which moves) due to time-variant tides.
Ocean Loading The vertical displacement of the ground due to the weight of the ocean moving due to time-variant tides.

The vertical displacement of the ground due to the weight of the atmosphere moving due to time-variantAtmospheric Loading tides.
Solid-Earth Tide The motion of the ground due to tidal forces, not including the effects of ocean and atmospheric loading.
Radial-Load Tides The combined effect of ocean and atmospheric loading as well as the solid-Earth tides.
Radiational Tide The motion of the crust, oceans, and atmosphere due to heating from the Sun.
Pole Tide/ Polar Motion A change in the direction of the Earth’s figure axis (The figure axis is defined in Appendix E).
Solid Earth Pole Tide Motion of the ground due to the centrifugal effects of changes in the Earth’s figure axis.
Ocean-Pole-Tide Loading An offset in the location of points due to the motion of the oceans resulting from the pole tide.
Dynamic Topography/
Dynamic Sea-Surface Topography/ The true height of the sea surface with respect to the geoid; that is, the orthometric sea-surface height.
Absolute Dynamic Topography/ It is the sum of the elastic ocean tide and the mean dynamic topography (and possibly the radiational tide).
Sea-Surface Topography/ Sometimes, the terms are used to (ambiguously) mean the mean dynamic topography.
Ocean-Surface Topography/
Mean Dynamic Topography/ The (nearly) time-invariant part of the dynamic topography.
Quasi-Stationary Sea Surface Does not include seasonal variations, non-permanent winds, eddies.
Topography (QSST) Does include permanent currents, circulation linked to the Earth’s rotation, permanent winds.

The height of the sea surface with respect to the reference ellipsoid.Sea-Surface Height (SSH) SSH=MSS + SLA
The ellipsoidal height of the mean dynamic topography. Approximately, the geoid height plus the meanMean Sea Surface (MSS) dynamic topography

Sea-Level Anomaly (SLA)/
Sea-Surface Height Anomaly (SSHA) The height of the sea surface above the MSS.

A mean sea level anomaly (sometimes just referred to as an SLA, lending confusion to the previous
definition of the SLA), as defined by the NOAA [44], occurs when the 5-month runningMean Sea-Level Anomaly
average of the interannual variation is at least 0.1 m greater than or less than the long-term trend.
The monthly MSL after the trend (increasing/decreasing over time) and the average seasonalInterannual Variation cycle are removed.

Sea-State Bias/
Electromagnetic Bias A bias in altimeter ranging to the sea surface due to wave troughs reflecting more energy than wave crests.

An aliasing problem in tidal estimation when the revisit period of an altimeter satellite is too low toTidal Aliasing observe high-frequency periodic tidal components.
Inverse Barometric Effect The observation that tides are higher on the order of 1 cm when atmospheric pressure goes down 1 mbar.

TABLE IX
COMMONLY USED TERMINOLOGY RELATING TO TIME-VARIANT TIDES THAT MOVE THE SEA SURFACE AND GROUND AS INFERRED FROM COMMON

USAGE IN MANY PAPERS.

Term Definition
The potential of the Earth if no other bodies existed in space. Changes over time are due to Earth mechanics,Non-Tidal Potential such as volcanism.
The potential due to the deformation of the Earth’s crust by other celestial bodies (Sun, Moon, etc). There areIndirect Tidal Potential time-invariant as well as time-variant parts.
The time-variant and invariant gravitational potential due entirely to other celestial bodies, almost alwaysDirect/External Tidal Potential computed with respect to an observer accelerating with the Earth through space.
The apparent change in gravitational potential experienced by a stationary observer on a rotating EarthCentrifugal Potential compared to an observer on a theoretical non-rotating Earth.

Tide-Free/Non-Tidal System A system influenced only by the non-tidal potential.
Zero-Tide System A system influenced only by the non-tidal potential and the permanent indirect-tidal potential.
Mean-Tide System A system influenced only by the non-tidal potential and the permanent direct-and-indirect-tidal potentials.
Permanent Tide Contributions to the tidal potential (or the shape of the Earth) that are time-invariant.

Indirect tidal-potential contributions due to the deformation of the non-oceanic (or any water) and atmosphericSolid-Earth Tide parts of the Earth. Sometimes, direct tidal potentials are included.
Ocean Tide The indirect tidal-potential contribution due to the movement of water in the oceans.

Changes in the orientation of mass within the Earth leading to a change in the Earth’s figure axis, which changesPole Tide/ Polar Motion acceleration due to gravity with respect to fixed points on the crust.
A time-variant solid-Earth tidal potential arising from the motion of the Earth’s figure axis with respect to the ITRSSolid Earth Pole Tide (polar motion), presumably due to motions in the Earth’s core and mantle with respect to the crust.

Ocean Pole Tide A time-variant tidal potential due to the motion of the ocean as a result of the centrifugal effect of polar motion.
TABLE X

DEFINITIONS OF THE DIFFERENT TIDAL POTENTIALS, TIDE SYSTEMS, AND TIDES. THE DEFINITIONS ARE BASED ON INFORMATION IN [257], [298],
[299].

The definitions are based on information in [257, 298, 299].

coordinate system, the location of the center of mass rcenter is

rcenter “ 1
∞N

i“1 Mi

˜
Nÿ

j“1
Mjr j

¸
(73)

where Mi is the mass of the ith body whose center of mass is located at r j. A coordinate system defined
such that the center of mass is the origin has rcenter “ 0 over all time. Consequently, the location of the first
object in the center-of-mass coordinate system can be expressed as

r1 “ ´ 1
M1

˜
Nÿ

j“2
Mjr j

¸
. (74)

Now, consider moving the origin of the coordinate system to the center of mass of the first object. A point
in the center-of mass coordinate system p can be expressed in the coordinate system at the center of mass of
the first object p̃ by the affine transformation

p “ r1 ` p̃. (75)

Using (74), taking the second derivative of (75) with respect to time, and solving for p̃, one finds that an
acceleration can be transformed from the center-of-mass system to the center of mass of Object 1’s system
using

:̃p “ :p ` 1
M1

˜
Nÿ

j“2
Mj:r j

¸
. (76)
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The acceleration due to the direct tidal potential (both permanent and time-variant) on Object 1 is :̃p minus
the contribution to gravitational acceleration due to Object 1 itself. The direct tidal potential is thus the
potential whose gradient (or negative gradient, depending on the definition) gives the acceleration due to the
direct tidal potential.

The significance of the transformation from an inertial center-of-mass coordinate system and its relation
to tidal potentials can be easily understood when considering the ideal Earth-Moon system on its own, as
illustrated in Fig. 25, where the Earth is approximated as a sphere having radius rJ and the center of mass of
the Moon is a distance of RK from the center of mass of the Earth. The example here is inspired by a similar
example in [171, Ch. 6.1]. Points A, B, and C are all on the surface of the spherical Earth. Using the law of
cosines and the law of sines, one can find that

R2
BM “R2

K ` r2
J ´ RKrJ cospqq (77)

a “arcsin
ˆ

rJ
RBM

sinpqq
˙

. (78)

The force per unit mass (acceleration) experienced by a small object at point p on the surface of the spherical36
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r J
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Fig. 26. The geometry of the Earth and the Moon used in the discussion on the
direct tidal potential. When the gravitational force of the Moon on the Earth
is transformed into an ECI coordinate system, the transformed forces point
roughly towards the center of the Earth at the poles (along the y-axis) and
away from the center of the Earth at the equator (along the x-axis) resulting
in an equatorial bulge and explaining why there are two high tides per day
on most of the Earth. The gravitational potential associated with the force of
the Moon and all other solar system bodies in ECI coordinates is the direct
potential. The time-invariant part is the permanent direct potential. The relative
radii of the Earth and Moon are to scale, but the Earth-Moon distance is not
to scale.

and demonstrates that the direct tidal contribution as well as
all time-variant tidal contributions can usually be ignored in
algorithms for determining the vertical direction of an observer
on the ground as the effects are an order of magnitude smaller
than the precision of the zero-tide EGM2008 model.

In a tide-free system, the gravitational potential V of a
point in an ECI coordinate system is computed based on the
shape that the Earth would be if the Earth were the only
object in space (the external potential [direct tidal potential]
has been removed) and all time-variant and time-invariant
tidal effects were removed. The tide-free model can only be
computed based upon models of the elasticity of the Earth; it
cannot be directly observed. The zero tide system computes
the gravitational potential of an observer in an ECI coordinate
system based on the mass distribution of the true shape of the
Earth after time-variant components and the external potential
have been removed. Consequently, the zero-tide model is
the best choice to use when one wishes to consider the
gravitational effects of the Earth independent of other bodies
in the solar system without regard to time-variant tides.

The mean tidal model is the zero-tide model with the direct
tidal potential added. The direct tidal potential is the apparent
change in potential experienced by an observer in an ECI
or ECEF coordinate system due to the physical presence of
bodies other than the Earth. To understand this, consider a
coordinate system whose origin is at the Newtonian center
of mass of a system containing N bodies. In an arbitrary
coordinate system, the location of the center of mass rcenter
is

rcenter “ 1
∞N

i“1 Mi

˜
Nÿ

j“1

Mjrj

¸
(73)

where Mi is the mass of the ith body whose center of mass
is located at rj . A coordinate system defined such that the
center of mass is the origin has rcenter “ 0 over all time.
Consequently, the location of the first object in the center-of-

mass coordinate system can be expressed as

r1 “ ´ 1

M1

˜
Nÿ

j“2

Mjrj

¸
. (74)

Now, consider moving the origin of the coordinate system to
the center of mass of the first object. A point in the center-of
mass coordinate system p can be expressed in the coordinate
system at the center of mass of the first object p̃ by the affine
transformation

p “ r1 ` p̃. (75)

Using (74), taking the second derivative of (75) with respect
to time, and solving for p̃, one finds that an acceleration can
be transformed from the center-of-mass system to the center
of mass of Object 1’s system using

:̃p “ :p ` 1

M1

˜
Nÿ

j“2

Mj:rj

¸
. (76)

The acceleration due to the direct tidal potential (both perma-
nent and time-variant) on Object 1 is :̃p minus the contribution
to gravitational acceleration due to Object 1 itself. The direct
tidal potential is thus the potential whose gradient (or negative
gradient, depending on the definition) gives the acceleration
due to the direct tidal potential.

The significance of the transformation from an inertial
center-of-mass coordinate system and its relation to tidal
potentials can be easily understood when considering the ideal
Earth-Moon system on its own, as illustrated in Fig. 26, where
the Earth is approximated as a sphere having radius rJ and
the center of mass of the Moon is a distance of RK from the
center of mass of the Earth. The example here is inspired by
a similar example in [171, Ch. 6.1]. Points A, B, and C are
all on the surface of the spherical Earth. Using the Law of
Cosines and the Law of Sines, one can find that

R2
BM “R2

K ` r2
J ´ RKrJ cosp�q (77)

� “ arcsin

ˆ
rJ

RBM
sinp�q

˙
. (78)

The force per unit mass (acceleration) experienced by a small
object at point p on the surface of the spherical Earth, but not
rotating with the Earth, is

ap “�VJ ` �VK (79a)

«GMJ
r2

J
p´ux cosp�q ´ uy sinp�qq

` GMK
R2

BM

pux cosp�q ´ uy sinp�qq (79b)

where simple uniform-mass-distribution approximations were
used to model the gravitational effects of the Earth and Moon.
GMJ and GMK, respectively, are the universal gravitational
constant times the mass of the Earth and the mass of the Moon.
rJ is the radius of the Earth, and ux and uy are respectively
unit vectors in the directions of the x and y axes. Noting that
the acceleration of the Moon due to the Earth is

aK “ ´GMJ
R2

K
ux. (80)

Fig. 25: The geometry of the Earth and the Moon used in the discussion on the direct tidal potential. When the gravitational force
of the Moon on the Earth is transformed into an ECI coordinate system, the transformed forces point roughly towards the center
of the Earth at the poles (along the y-axis) and away from the center of the Earth at the equator (along the x-axis) resulting in an
equatorial bulge and explaining why there are two high tides per day on most of the Earth. The gravitational potential associated
with the force of the Moon and all other solar system bodies in ECI coordinates is the direct potential. The time-invariant part is
the permanent direct potential. The relative radii of the Earth and Moon are to scale, but the Earth-Moon distance is not to scale.

Earth, but not rotating with the Earth, is

ap “—VJ ` —VK (79a)

«GMJ
r2

J
p´ux cospqq ´ uy sinpqqq ` GMK

R2
BM

pux cospaq ´ uy sinpaqq (79b)

where simple uniform-mass-distribution approximations were used to model the gravitational effects of the
Earth and Moon. GMJ and GMK are the universal gravitational constant times the mass of the Earth and the
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mass of the Moon, respectively. rJ is the radius of the Earth, and ux and uy are unit vectors in the directions
of the x and y axes, respectively. Noting that the acceleration of the Moon due to the Earth is

aK “ ´GMJ
R2

K
ux (80)

where RK is the distance between the centers of mass of the Earth and Moon, the acceleration of the point
transformed into a coordinate system centered at the center of mass of the Earth using (76) is

ãp “ ap ´ GMK
R2

K
ux. (81)

The direct tidal contribution to the acceleration in (81) is all accelerations resulting from forces that are not
due directly to the physical mass of the Earth. That means that one must subtract off —VJ to get the direct
tidal acceleration contribution

ãdirect
p “ GMK

R2
BM

pux cospaq ´ uy sinpaqq ´ GMK
R2

K
ux. (82)

In the examples below, the following values are used:

GMJ “3.986004418 ˆ 1014 m3

s2 (83)

µ “0.0123000371 (84)
GMK “µGMJ (85)

rJ “6378136.6m (86)

RK “3.994833385218484 ˆ 108 m. (87)

All of the values except for that of RK are taken from the IERS conventions [257, Ch. 1]. The value of RK
was determined using the DE430 ephemerides read using the cspice spkezr function in NASA’s SPICE
toolkit for Matlab for the date of 12 June 2012 at 14:00 UTC (see Appendix I). At point A in Fig. 25, when
q “ 0, Eq. (82) simplifies to

ãdirect
p

ˇ̌
q“0 “GMK

ˆ
1

pRK ´ rJq2 ´ 1
R2

K

˙
ux (88a)

«1.005 ˆ 10´6 m
s2 ux. (88b)

Similarly, at point C in Fig. 25, when q “ p , (82) simplifies to

ãdirect
p

ˇ̌
q“p

“GMK

ˆ
1

pRK ` rJq2 ´ 1
R2

K

˙
ux (89a)

« ´ 9.580 ˆ 10´7 m
s2 ux. (89b)
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On the other hand, when q “ p

2 , then

ãdirect
p

ˇ̌
q“ p

2
“ GMK

R2
K ` r2

J

¨

űx

d

1 ´ r2
J

R2
K ` r2

J
´ uy

rJb
R2

K ` r2
J

˛

‚´ GMK
R2

K
ux (90a)

« ´ 1.174 ˆ 10´8ux ´ 4.903 ˆ 10´7uy. (90b)

From (88b), (89b), and (90b), it can be seen that the total direct tidal potential of the Moon produces a
force per unit mass on the order of 10´6 m{s2 around the globe. As the Moon orbits the Earth, the directions
of the accelerations will change. However, since the Moon stays in roughly the same plane, the acceleration
of a particle near the poles contains a time-invariant portion in the y direction, thus compressing the Earth.
This time-invariant contribution is the direct permanent tidal potential.

The direct permanent tidal potential due to the Moon is on the order of 10´6 m{s2. In comparison, the
bias of acceleration due to gravity in the tide-free EGM2008 model in Fig. 22 is on the order of 10´5m{s2.
As shown in a plot in [234, Ch. 3.1], the acceleration experienced in an ECI coordinate system due to the
Sun is less than that due to the Moon. Consequently, when using a gravitational-acceleration measurement
to determine the orientation of an observer on or near the surface of the Earth, one can probably ignore the
direct tidal potential. Consequently, the zero-tide permanent-tide model is often sufficient.

In [77], theoretical inconsistencies that arise with the use of a mean-tide model are highlighted. In
[264], it is noted that the determination of GPS locations on the surface of the Earth in terms of a tide-free
coordinate system is physically meaningless, and it is suggested that a zero-tide model be used. However,
the WGS 84 standard uses a tide-free model for defining the geoid and reference ellipsoid [69, Ch. 6].
The tide systems used by other countries vary, as noted in [77], where conversions between tide systems
are provided.62 When considering the physical location of points on the Earth, the difference between a
mean-tide and a tide-free model is approximately ´12cm at the poles and `6cm at the equator [257, Ch.
7.1.1].

The pole tide also affects the Earth’s gravitational field. The pole tide arises from a redistribution of mass
within the Earth with regard to the crust, which changes the figure axis of the Earth. A definition of the figure
axis and more details on the nature of the pole tide are given in Appendix E. The IERS 2010 conventions
[257, Ch. 6.1, Eq. 6.5] says that two of the lower-order terms in the EGM2008 model must be modified to
be consistent with the wobbling rotation axis of the Earth in the ITRS. The modified parameters depend on
the values of other spherical harmonic gravitational parameters, and the pole tide modifications should be
made after accounting for the drift of the model’s coefficients over time. The drift of the coefficients was
noticed in [366] and is documented for the EGM2008 model in [257, Ch. 6.1].63

Figure 26 quantifies the difference in acceleration due to gravity and the direction of the vertical vector
under a complete-tide model based on the descriptions in [332, Ch. 5] and [257, Ch. 6] compared to a zero-
tide model. Eq.(70) was used to determine the angular difference between the gravitational-acceleration

62Chapter 6.2.2 of the WGS 84 standard [69] provides the same formula as in [77] for converting from a tide-free to a zero-tide
geoid model.

63The pole tide correction listed in [332, Ch. 6.9.2.1] is not the same as that in [257, Ch. 6.1]. It is not clear which one is better.
The one from [257, Ch. 6.1] is used in this report as it is a standard.
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vectors in each instance. Again, it can be seen that the effects of time-variant tides are less than the accuracy
of the EGM2008 gravitational model, so those designing tracking and navigation algorithms can often ignore
the effects of time-variant tides on the Earth’s gravitational potential.
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Fig. 26: Plots of the difference between the EGM2008 zero-tide model and the EGM2008 tide-free model with added tides for 12
June 2012 at 14:00 UTC. The quantities were computed without the contribution of the centrifugal potential of the rotating Earth.
The solid-Earth tidal effects on the geopotential were added using the model in [332, Ch. 5], where values for kp`q

2m were taken
from [257, Ch. 6] (as they are missing from [332, Ch. 5]). The pole tidal effects and the ocean tidal effects were added using the
models of [257, Ch. 6], where coefficients for the FES2004 tidal model were downloaded from the link in Table 2. The necessary
Moon and Sun direction vectors were obtained using the DE430 ephemerides, which were read using the cspice spkezr
function in NASA’s SPICE toolkit for Matlab (see Appendix I). Time-conversion routines from the IAU’s SOFA library were also
used.

Additionally, due to inconsistent documentation, the accuracy of the gravitational tidal models is limited
for anyone trying to reproduce the results, meaning that one cannot truly recreate the models without access
to the original code of the developers, which has not been made public online. For example, in the IERS
conventions [257, Ch. 6], it is unclear whether an elastic or an anelastic Earth model is recommended, or
whether some combination of the two is preferred. In particular, the second step in the solid tide offset for
the IERS conventions is unclear and the algorithm provided in [332, Ch. 5] omits a number of coefficients
that are provided in the IERS conventions.

Furthermore, inconsistencies exist between the tide model assumed in the IERS conventions and that
implied by the coefficients given for the EGM2008 gravitational model. If one uses the formula of Section
6.2.2 of the IERS conventions to convert the zero-tide EGM2008 spherical harmonic gravitational coefficient
into the tide-free system using the value of the Love number k2,0 given in Table 6.3 in the conventions,
one obtains a different result than the tide-free value given in the EGM2008 itself. Whereas the Love
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number in the IERS conventions is k2,0 “ 0.29525, using the value k2,0 “ 0.3 in the conversion of the zero-
tide spherical harmonic coefficient into a tide-free value is consistent with the tide-free value given in the
EGM2008. This is in line with the documented conversion between zero-tide and tide-free models in the
EGM96 model [198, Sec. 3.3.1] and the WGS 84 standard’s ideal Love number [69, Ch. 6.2]. Since the
EGM2008 model derived its tide-free coefficients using a different k2,0 Love number than the tide model
suggested by the IERS conventions, one would expect a loss of accuracy when using the gravitational tide
model of the IERS conventions with the EGM2008 gravitational model.
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7. THE EARTH’S MAGNETIC FIELD

Though coordinate systems based on the Earth’s magnetic field exist [115, 131], such systems are typi-
cally best suited for modeling the trajectories of charged particles in the solar wind approaching the Earth.
For target tracking applications, magnetic-field-based coordinate systems are generally of little interest in-
sofar as they are not required for modeling of various physical effects. However, accurate models of the
Earth’s magnetic field can play an important role in target tracking. For example, the Lorentz force experi-
enced by charged satellites traveling through the Earth’s magnetic field can be harnessed to perform limited
maneuvers without using thrusters [15, 105, 106, 318, 330]. Similarly, the magnetic-field measurements can
be used to help determine the orientation of a sensor to a moderate precision. This section looks at basic
spherical-harmonic magnetic-field models that are used in Section 8.2 for sensor orientation estimation.

Models of the Earth’s magnetic field are typically decomposed into the four parts shown in Table 11.
Ideally, one would use a model that includes the combined effects of all the fields in real time. In practice,
however, simpler models are used. The most prevalent Earth magnetic-field models only model the main
field. The World Magnetic Model (WMM) and the International Geomagnetic Reference Field (IGRF) are
the two most prominent main field models. The IGRF is meant to represent the Earth magnetic field at
times in the past, whereas the WMM is a predictive model for times in the future. Table 2 lists sources
and documentation for the WMM. As described in [223], the WMM is used by the U.S. Department of De-
fense, the U.K. Ministry of Defense, the North Atlantic Treaty Organization (NATO), and the International
Hydrographic Organization. On the other hand, the IGRF, which is described in [91], is created by a task
force of the International Association of Geomagnetism and Aeronomy (IAGA) and can be obtained from
http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html . The magnetic field for the IGRF as well
as for the WMM is defined in terms of spherical-harmonic coefficients, which can be used as described in
Appendix F. Neither the IGRF nor the WMM is a static model. Rather, the values of the spherical-harmonic
coefficients drift over time. The models come with drift-rate coefficients that are used to tailor the models
to a specific date. New versions of the models are released every five years.

Table 11: Components of the Earth’s Magnetic Field
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Field Type Description
Core Field
Main Field The part of the Earth’s magnetic field generated by the dynamo process in the fluid outer core of the Earth.

Anomaly Field
Crustal Field The part of the Earth’s magnetic field arising from magnetic materials in the Earth’s crust.

External Field The part of the Earth’s magnetic field due to electrical currents in the ionosphere.
The part of the Earth’s magnetic field from currents induced in the crust due to electricalInduced Field currents in the ionosphere.

Table 11: Models of the Earth’s magnetic field are typically decomposed into the parts described above.

Though coordinate systems based on the Earth’s magnetic field exist [116, 132], such systems are typi-
cally best suited for modeling the trajectories of charged particles in the solar wind approaching the Earth.
For those interested in target tracking, magnetic-field-based coordinate systems are generally of little in-
terest insofar as they are not required for modeling of various physical effects. However, accurate models
of the Earth’s magnetic field can play an important role in target tracking. For example, the Lorentz force
experienced by charged satellites traveling through the Earth’s magnetic field can be harnessed to perform
limited maneuvers without using thrusters [16, 106, 107, 318, 331]. Similarly, the magnetic-field measure-
ments can be used to help determine the orientation of a sensor to a moderate precision. This section looks
at basic spherical-harmonic magnetic-field models that are then used in Section 8.2 for sensor orientation
estimation.

Models of the Earth’s Magnetic field are typically decomposed into the four parts shown in Table 11.
Ideally, one would use a model that includes the combined effects of all of the fields in real time. In practice,
however, simpler models are used. The most prevalent Earth magnetic-field models only model the main
field. The World Magnetic Model (WMM) and the International Geomagnetic Reference Field (IGRF) are
the two most prominent main field models. The IGRF is meant to represent the Earth magnetic field at
times in the past, whereas the WMM is a predictive model for times in the future. Table 2 lists sources
and documentation for the WMM. As described in [222], the WMM is used by the U.S. Department of De-
fense, the U. K. Ministry of Defense, the North Atlantic Treaty Organization (NATO), and the International
Hydrographic Organization. On the other hand, the IGRF, which is described in [91] is created by a task
force of the International Association of Geomagnetism and Aeronomy (IAGA) and can be obtained from
http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html . The magnetic field for the IGRF as well
as for the WMM is defined in terms of spherical-harmonic coefficients, which can be used as described in
Appendix F. Neither the IGRF nor the WMM is a static model. Rather, the values of the spherical-harmonic
coefficients drift over time. The models come with drift-rate coefficients that are used to tailor the models
to a specific date. New versions of the models are released every five years.

The WMM and IGRF are commonly used on navigation charts. Figure 28 is an example of a subset of
an FAA map for pilots flying under visual flight rules (VFR). Such maps can be obtained for free from [338].
FAA VFR flight maps list the offset in the direction of the Earth’s magnetic field from true North to help
pilots navigate. The numbers at the ends of runways are the first two digits of the three-digit magnetic
heading that a pilot must fly to land the plane on the runway. For example, a pilot approaching a runway

Models of the Earth’s magnetic field are typically decomposed into the parts described above.

The WMM and IGRF are commonly used on navigation charts. Figure 27 is an example of a subset of
an FAA map for pilots flying under visual flight rules (VFR). Such maps can be obtained for free from [336].
FAA VFR flight maps list the offset in the direction of the Earth’s magnetic field from true North to help
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pilots navigate. The numbers at the ends of runways are the first two digits of the three-digit magnetic
heading that a pilot must fly to land the plane on the runway. For example, a pilot approaching a runway
labeled 09 will be heading East (90˝ clockwise from magnetic North) and the other side of the runway would
be numbered 27 corresponding to 270˝. However, due to field effects not modeled in the WMM, FAA flight
maps are labeled when there exists a large deviation in magnetic north from the WMM model. As can be
seen in Fig. 27, an 8˝ deviation exists near Aberdeen Proving Ground in Aberdeen, Maryland.

Fig. 27: An excerpt of the FAA’s sectional aeronautical raster chart dated 25 July 2013 for Washington, DC illustrating the local
magnetic disturbance near the Aberdeen Proving Ground in Aberdeen, Maryland. FAA aeronautical charts are available online for
free at [336].

For the purposes of determining the orientation of a sensor near the ground, better models to use are
the high-definition geomagnetic model (HDGM) and the enhanced magnetic model (EMM). The HDGM
includes the effects of the main field as well as the crustal field and part of the external field, as described
in [222]. The HDGM is put out by the National Oceanic and Atmospheric Administration (NOAA) every
year and, as of 24 July 2014, costs $20,060 U.S. as given on http://www.ngdc.noaa.gov/geomag/
hdgm.shtml though U.S. government agencies can generally obtain it free of cost. The primary market
for the HDGM is oil-well drillers. As described in [38], it is common for well drillers to drill multiple wells
horizontally underground from a single hole in the ground. Well drillers use gravitational- and magnetic-field
measurements to determine the location of the bit underground to try to avoid colliding with neighboring
wells and to reach desired geological features.

The EMM is similar to the HDGM, but is published only every five years. The EMM with documentation
can be obtained from the sources given in Table 2. Though the spherical-harmonic model of the EMM is the
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same degree and order as the HDGM, it is not published as often, making the EMM less suitable for real-time
high-precision drilling than the HDGM. For the purposes of this report, however, the 2010 release of the
EMM is used. Figure 28 shows the difference between the EMM and the WMM near the Aberdeen Proving
Ground. Though the map in Fig. 27 notes a deviation of 8˝, the maximum deviation in Fig. 28 is only
on the order of 1˝, indicating that the EMM is not capable of modeling small-scale magnetic disturbances.
However, higher-fidelity models are possible using data from aeromagnetic surveys taken by aircraft to map
local magnetic variations. As noted in [38, 222], it is possible for the spherical-harmonic models such as
the HDGM to be combined with aeromagnetic survey data to produce better overall results. However, there
does not appear to be a simple, published algorithm for accurately combining such models, even though a
number of small companies exist that provide such services.
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Fig. 28: The difference in the magnetic declination from the WMM2010 and the EMM2010 magnetic models near the Aberdeen
Proving Ground in Aberdeen, Maryland for points on the WGS 84 reference ellipsoid. The time for the models was set to 25 July
2013, the same as the date of the FAA’s chart excerpt in Fig. 27. Since the largest difference is only on the order of 1˝, one can
conclude that the resolution of the EMM2010 is not sufficiently high to model the 8˝ deviations that are marked on the FAA chart
in Fig. 27.

Figure 29 plots the deviation between magnetic North and true North as well as the magnetic inclination
for the 2010 version of the EMM at its epoch year. It can be seen that over significant portions of the Earth,
large deviations between the direction of the geographic pole and the magnetic pole are present. Despite the
shortcomings of the EMM, the error of the model is significantly less than 8˝ over most of the globe. Indeed,
as noted in [223], the error requirement for the direction of magnetic North (declination) in the WMM, which
is less precise than the EMM, is a RMS error of 1˝ during its period of validity. In [222], the declination
uncertainty of the HDGM (presumably RMS error) was given to be 0.3˝, which one might assume is on the
order of the accuracy of the EMM. Interestingly, the RMS precision of the WMM listed in [223] is actually
better than the precision listed for the HDGM. However, one might expect that the precision is only with
reference to the “main field” and not with respect to crustal variations.
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Fig. 29: Plots of (a) the difference in direction of geographic North and a local compass reading of North (magnetic declination),
and (b) magnetic inclination, with points evaluated on a grid of 2500 ˆ 2500 points in latitude and longitude. For both plots,
magnetic-field values using the EMM2010 model at the epoch year (2010) were used for points on the surface of the WGS 84
reference ellipsoid. In (a), the magnetic poles (which do not coincide with the geographic poles) can be identified as points in the
upper left and lower right about which the bias in the compass reading completes a 180˝ cycle. Note that the magnetic pole in the
geographic northern hemisphere is magnetic South. Magnetic inclination is the angle between the local tangent plane (in this case,
on the WGS 84 ellipsoid) and the direction of the magnetic-field vector B with “down” being the positive direction.

Unlike spherical-harmonic gravitational models, such as the EGM2008, neither the EMM nor the HDGM
come with coefficients for computing a covariance matrix for the vector magnetic-field measurement at a
given point. On the other hand, the British Geological Survey Global Geomagnetic Model (BGGM) has
associated tabular accuracy data, which can be downloaded from http://www.geomag.bgs.ac.uk/
data service/directionaldrilling/bggm.html and is described in [210]. However, the BGGM
is less accurate than the HDGM [222] and is also not a free model. Free geomagnetic models of an accu-
racy higher than the HDGM exist, such as the EMAG2 model described in [220]. However, the EMAG2
model only tabulates the magnitude of the Earth’s magnetic field on a grid of points. It does not provide
three-dimensional magnetic-field vectors and thus it is not particularly useful for direction estimation. A
precursor to EMAG2 forms the basis of the World Digital Magnetic Anomaly Map, which is described
in [221] and can be downloaded from http://geomag.org/models/wdmam.html .

Initially, it may seem like magnetic-field measurements are completely unsuited for direction determina-
tion for target tracking. With a model accuracy probably not better than 0.3˝ on average and possible outlier
model errors on the order of 7˝ to 8˝, the precision of the direction estimation is unsuitable for any long-
range sensing applications. However, joint-vector magnetic and gravitational sensors are very inexpensive
and thus can be very useful for determining the orientation of a short-range sensor to a reasonable accuracy.
For example, the STMicroelectronics LSM303D is listed at less than $2.13 U.S. on www.digikey.com as
of 24 July 2014. The least significant bit (LSB) in the documentation [315] for the accelerometer component
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is 0.061mg, where 1g is assumed to be the standard value of acceleration due to gravity, which in the SI
standard [39] is 9.80665m{s2. For the magnetic field sensor component, the LSB is 0.008 µT. To transform
the LSB precisions into angular accuracies that have more meaning for directional estimation, consider the
case where the true acceleration due to gravity is aligned with the z-axis, meaning that

g “

»

—–

0
0

9.80665
m
s2

fi

�fl . (91)

The maximum 1-bit perturbation in each component means offsetting the x and y components by 0.061 ˆ
10´3 times 9.80665 m

s2 and reducing the z component by the same amount, so as to maximize the angular
offset. This offset vector is thus
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an offset of approximately 17.79 arcseconds (« 0.00494˝). A typical low value of the Earth’s magnetic-
field strength is on the order of 31 µT. Thus, using a similar logic as determining the 1-bit error offset of
the direction estimation, the offset of the direction of the magnetic-field measurement is on the order of
1.25 arcminutes (« 0.02˝). Though the inherent bias and noise in the sensor is much larger than the LSB,
with proper calibration, after averaging a number of measurements, one might be able to achieve directional
measurements that are on the order of the accuracy of the EMM model, which should be sufficient for a
number of short-range sensing applications.

Magnetic-field models also arise when tracking objects in space for purposes of ionospheric model-
ing, for example. Real-time external field information can be obtained from http://www.geomag.us/
models/RTDFC.html and the data-source links provided therein. Additionally the International Real-
time Magnetic Observatory Network (INTERMAGNET), which was formed by the USGS and the British
Geological Survey (BGS) through the IAGA/IUGG [312], provides real-time Earth magnetic-field mea-
surements from around the world. However, it is up to users of the data to create their own real-time
magnetic-field models from the data.

Finally, it should be noted that the presence of power lines and numerous other things on land can bias
magnetic-field measurements. At sea, ocean waves can also bias magnetic-field measurements. However,
it has been demonstrated that the bias is on the order of 0.2nT [356], which is insignificant considering the
limited precision of the Earth magnetic-field models.
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8. DETERMINING THE ORIENTATION OF A SENSOR

Though a large number of techniques for residual sensor bias estimation exist within the context of
the target-tracking literature, as discussed in Section 1, less focus is placed on determining the location
and/or pointing direction of a sensor in the first place. For the purposes of this report, the problem of
sensor localization is omitted, as global navigation satellite systems, such as GPS, can easily be used for
high-precision sensor localization. Although such systems have failed for short times, for example, on 6
December 2006, when a solar flare rendered GPS inoperable for approximately 15 minutes on the sunlit side
of the Earth [2], and are vulnerable to other failures and to low-powered jammers [194], satellite navigation
systems are reliable in most conditions. When satellite navigation is not possible, localization using stars
can be considered [172, 173, 177, 276].64 The Defense Advanced Research Projects Agency (DARPA) has
started a number of projects to improve GPS-free localization and navigation [63].

This section discusses how one can determine the orientation of a sensor. Orientation estimation can be
done using GPS signals. However, as described in [96], it necessitates the use of a two-antenna GPS receiver,
is limited to an accuracy of 0.4˝, and aspects of the technique are patented.65 On the other hand, on a ship one
might consider using the direction of “North” provided by the ship’s gyrocompass. However, such direction
information is complicated by the fact that large ships bend. For example, when transferring alignment
information between IMUs on large ships (or spaceships), the flexure (bending) of the material making up
the ship must be taken into account [33, 163, 178]. Additionally, the best gyrocompasses advertised appear
to have an accuracy no better than 0.1˝ secLat [272, 326]. The term “secLat” refers to the secant of the
latitude, meaning that the direction estimates become increasingly bad near the geographic poles. Thus, at
60˝ latitude, which is near southern Greenland, the best gyrocompass accuracy should be on the order of
0.2˝.

Stars or satellites with known ephemerides can be used as points of reference for determining one’s ori-
entation. For example, in [174], it is noted that strategic missile systems have used star-tracking algorithms
to determine their orientation to sub-arcsecond accuracy. However, commercial-off-the-shelf (COTS) navi-
gation systems are not nearly as accurate as missile systems in terms of orientation-estimation accuracy, as
it is not as critical for their use in most systems. Additionally, COTS solutions must deal with atmospheric
refraction, whereas long-range missiles will presumably spend a portion of their trajectory outside of most
of the atmosphere. For example, Northrop Grumman’s commercially available stellar-inertial-GPS naviga-
tion system estimates the heading of an aircraft to an accuracy of approximately 20 arcseconds and roll and
pitch to an accuracy of approximately 72 arcseconds [245].

While stars are always visible to satellites (that are pointed in the correct direction) and are visible to
the naked eye at night when it is not cloudy, stars (other than the Sun) can be seen during the day in the
infrared region. Infrared star spectroscopy is possible during daytime, and stars are better seen through dust
in the infrared region than in the visible region [227]. Indeed, daytime star tracking has been studied since
at least the 1960s as a tactical inertial-navigation system alignment reference [141]. However, stars often
cannot be seen well when it is cloudy. In such instances, one can consider using satellites. For example, as

64Interestingly, some GPS-free localization techniques rely on how the atmosphere warps the apparent location of stars at differ-
ent elevation angles [112, 275].

65In [181], it is claimed that multi-antenna GPS systems provide attitude accuracy on the order of 1mrad, which is approximately
0.05˝.
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of 26 November 2012, the ITU listed 466 non-planned66 geostationary satellites and 584 non-planned non-
geostationary satellites between ´10˝ and 10˝ longitude that broadcast within the S-band region (2´4GHz)
[153] that is also used by radars. However, simply because a satellite has been allocated a specific band of
frequencies does not mean that it will be broadcasting all the time. Thus, the passive use of satellites for
orientation estimation can be problematic. However, there do exist satellites specifically designed for radar
calibration [162], which might be particularly suitable for determining the orientation of a radar.

This section demonstrates how most of the coordinate systems and physical effects discussed in the
previous sections of this report must be considered jointly when determining the orientation of a sensor.
Section 8.1 reviews a generic algorithm for estimating a rotation matrix given common observations in two
coordinate systems, demonstrating how it is equivalent to a maximum-likelihood algorithm under certain
conditions. Section 8.2 pulls together the results from previous discussions on models of the Earth’s gravi-
tational and geomagnetic field to demonstrate how one can determine orientation using magnetic and gravi-
tational (accelerometer) measurements by means of the algorithm of Section 8.1, which is shown to produce
identical results to a globally optimal solution. Section 8.3 pulls together previous discussions on celestial
and terrestrial coordinate systems to discuss how one’s orientation can be determined using observations of
stars, without knowing a priori the association of observed stars to catalogued stars.

8.1 Orientation Estimation Using Sets of Common Observations

8.1.1 An Explicit Estimation Algorithm

A large number of algorithms for determining the orientation (also known as attitude) of a sensor, mis-
sile, or spacecraft exist, in part, due to the fact that a large number of mathematical representations of 3D
orientation exist. Whereas it is possible to represent the 3D orientation of an object using three parameters,
such as Euler angles, it has been proven that no singularity-free three-parameter representation of an ori-
entation is possible [319]. Consequently, orientation-estimation algorithms often parameterize the rotation
space with more than three parameters, adding constraints to account for redundancy. In [290] as well as
in [259, 260, 342, 369], a number of attitude representations are surveyed along with dynamic equations for
how the attitude of a sensor might change over time. Some representations are better suited for modeling
rotations than others.

The ability to filter measurements to estimate the changing orientation of a rotating sensor is important
in navigation systems. In [51, 197], a number of recursive algorithms for dynamic rotation estimation are
surveyed. However, all of the surveyed algorithms require initial estimates for orientation that are then
updated over time. This section focuses on the task of obtaining such initial estimates from measurements
at a single time. The dynamic estimation problem is not addressed.

The problem of designing an algorithm to determine the orientation of a sensor is related to the problem
of designing a cost function over which optimization can be performed. Depending on the formulation of the
problem, maximum-likelihood estimation techniques must be designed so as to take the spherical statistics
of 3D directional measurements into account, though the maximum-likelihood cost function considered in
Section 8.2 for estimating using magnetic and gravitational measurements does not depend on such statistics.
A strict mathematical treatment of orientation/directional estimation generally involves circular and spheri-
cal statistics. Monographs on circular and spherical statistics are [92, 93, 211]. To understand the necessity

66Non-planned satellites use non-planned frequency bands. These are regions of the spectrum that are taken on a first-come,
first-served basis. Planned frequency allotments are managed by the ITU.
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for circular and spherical statistics when making directional measurements, consider the measurement of
wind directions. If one were given two measurements of wind directions, one being e radians, where e is a
small number, and the other being 2p ´ e radians, then for a very small e , it can be seen that the best way to
average the measurements will result in a direction estimate of 0 radians. However, the numerical mean of
the directions results in an estimate of p radians, which is clearly very bad. Thus, directional measurements
often need to be handled in a different manner than other types of measurements. Similarly, orientation data
adds an additional degree of freedom to pure directional measurements, requiring its own unique methods
of averaging estimates [46, 121, 161, 215], and its own probability distributions, such as the uninformative
(uniform) distributions presented in [291].

In [314], a variety of cost functions for orientation estimation are presented along with a number of
orientation-estimation techniques. One particularly simple cost function for directional estimation was sug-
gested by Wahba [353] and an initial solution for a rotation matrix minimizing the cost was given in [86].
The cost function is

CW ,
Nÿ

i“1

kui ´ Rũik2 (93)

where R is a rotation matrix, ui is one of N unit-direction vectors in Coordinate System 1 and ũi is a unit-
direction vector in Coordinate System 2. The choice of whether ui consists of measured directions and ũi
reference values or vice versa is arbitrary. The rotation matrix for the inverse transformation is just the
matrix transpose: R´1 “ R1. As shown in [12], the minimization of Wahba’s cost function over the rotation
matrix R can be rewritten as the maximization problem

argmin
R

CW “argmaxTrpRHq (94)

H “
Nÿ

i“1
ũiu1

i. (95)

In comparison, in the area of directional statistics, the matrix von Mises-Fisher probability-density function
(PDF), initially defined in [73], is

ppRq “ apHqexppTrpRHqq (96)

where R is constrained to the set of rotation matrices and apHq is a scalar normalization constant. Thus,
optimization over Wahba’s cost function is equivalent to performing likelihood maximization of the matrix
von Mises-Fisher PDF. The maximization of the matrix von Mises-Fisher distribution is considered in [165]
and such optimization shall form the basis of the orientation-estimation algorithm presented in this section.

Many of the earliest algorithms for orientation estimation appear to be within mathematics and the space
sciences. Wahba’s problem was initially presented in the context of satellite attitude estimation [86,353] and
a number of algorithms such as the DOAOP algorithm [50, 62], the TRIAD algorithm, and the quaternion
estimator (QUEST), which are compared in [293], among others as discussed in [213, 214, 288, 293], have
been developed within the context of outer space applications or by those in the space field. Of note,
however, is that a number of solutions to orientation estimation outside of space applications have been
developed and authors in the separate fields seldom cite the work of each other. Indeed, Wahba’s problem
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is just a variant of the orthogonal Procrustes problem of mathematics [283], though the two problems are
seldom mentioned together.

In [76], a number of orientation-estimation algorithms developed outside of the context of space appli-
cations are compared. Many of the solutions to the problem utilize singular value decomposition (SVD).
The solution given in the mathematics literature [165] appears to be the first to use SVD for rotation-matrix
estimation. However, authors in the space literature [212, 213] as well as authors outside of the space lit-
erature [12, 170, 331] have developed similar algorithms based on SVD, generally without regard to work
done outside of their respective fields. In this report, the SVD algorithm of [331] is used, because it opti-
mally solves the orientation-estimation problem using Wahba’s cost function, and can be used to solve more
general sensor registration problems as well.

The SVD algorithm of [331] can be used to solve for the least-squares rotation, translation, and/or scaling
between two sets of corresponding vectors, and the rotations do not have to be limited to three dimensions.67

The general form of the algorithm finds the rotation matrix R, the translation vector t, and the scale factor c
that minimizes the cost function

CU “
Nÿ

i“1

kzi ´ pcRz̃i ` tqk2 (97)

where z̃i can be viewed as the ith vector (not necessarily a unit vector) in one coordinate system that is scaled
by c, rotated using rotation matrix R and translated by t to arrive in the second coordinate system, where zi
is a corresponding vector in that system.

By omitting certain steps, Umeyama’s algorithm for orientation estimation [331] can be used to just
estimate R, to estimate R and t, or to estimate R, t, and c. When just the rotation matrix R is desired, the
algorithm is as follows:

1. Given Z, and Z̃, which are m ˆ N matrices of the N m-dimensional column-vectors zi and z̃i, respec-
tively, in the two coordinate systems, stacked next to each other.

2. Perform a singular value decomposition on the matrix product A “ ZZ̃1 to obtain unitary matrices
U and V such that A “ UDV1 where D is a diagonal matrix. In Matlab, this can be done using the
command [U,D,V]=svd(A); .

3. Create the matrix S “ Im,m, where Im,m is an m ˆ m identity matrix.

4. Set r equal to the rank of A. This can be done in Matlab using r=rank(A); . Note that if r † m´1,
then no unique solution for the rotation matrix exists.

5. If r “ m ´ 1 and the product of the determinants of U and V is less than zero (use the compari-
son det(U)*det(V)<0 in Matlab), of if r ° m ´ 1 and the determinant of A is less than zero
(det(A)<0 in Matlab), then set Sm,m “ ´1 (the element in the last row and column of S should be
set to ´1). This implements equations (3) and (5) in [331].

67The algorithm works well with 2D rotations. Though the Lorentz transformation of special relativity theory can be expressed
as a four-dimensional (4D) rotation [290], the rotation expression uses complex numbers (the time-component is made imaginary).
The all-real formulation of the Lorentz transformation, derived in [206, Ch. 1.2.2], is not, however, a rotation. Thus, the algorithm
of [331] cannot be used to estimate the Lorentz transformation between special relativistic inertial frames.
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6. The rotation matrix is given by

R “ USV1; (98)

This implements Eq. 4 in [331].

In comparison, the complete algorithm for estimating R, t, and optionally c is slightly different and is
given in Appendix G.

8.1.2 Accounting for Measurements of Varying Accuracy

With the proper weighting, it is shown in [289] that Umeyama’s algorithm can be viewed as maximizing
a clipped likelihood function when given measurements of varying accuracy. This subsection considers how
the cost function can be modified to account for varying measurement accuracy.

When one has direction estimates in the form of unit vectors and one wishes to estimate the rotation
matrix R in u “ Ru, Umeyama’s algorithm is good, because one can use a modified version of Wahba’s cost
function to take into account the varying accuracy of the direction estimates. For example, the Mahalanobis
distance–like cost function

CM “
Nÿ

i“1

1
s

2
i

pui ´ Rũiq1 pui ´ Rũiq (99)

is equivalent to the cost function CU in Umeyama’s problem (97) where

zi “ 1
si

ui (100)

z̃i “ 1
si

ũi (101)

and si is a scaling matrix that is related to the accuracy of the measurements. However, the choice of a
good scalar si for weighting each of the measurements is not straightforward and it is not immediately clear
whether changing si will change the results.

In [289], the problem of maximum-likelihood orientation estimation is addressed. Under the assumption
that the u terms are the measurements and the ũi terms are ideal reference values (thus R converts from global
to local coordinates), it is assumed that the measurements are given as unit vectors having a distribution of
the form

ppuiq “ 1
k

e
´ 1

2s

2
i

kui´Rũik2

(102)

where k is a normalization constant, ui is defined over the unit sphere, and si is a known standard-deviation
quantity. It is then shown that to a high numerical precision for measured pointing accuracies better than 1˝,
the optimal value of Mi is actually the scalar value 1{s

2
i .
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Though in [289], it is implied that si should have units of angle, that is incorrect. Expanding the squared
difference of two unit vectors u1 and u1, one gets

ku1 ´ u2k2 “ 2 ´ 2cospqq (103)

where the relation in (71) was used and q is the angle between the unit vectors. Thus, for the exponent in
(102) to be dimensionless, s

2
i must have units of the cosine of an angle, not of the angle itself. Thus, an ad

hoc choice of s

2
i is

s

2
i « 2 ´ 2cosps

q

q (104)

where s

q

is the (presumably simple to measure) RMS directional error of the measurement. It can be shown
that for small values of s

q

, such as 1˝ or less, one finds that the numerical value of si « s

q

(in radians),
validating the use of s

q

in place of si in [289]. The problem of the optimal choice of weights is also
discussed in [292].

Whereas in the example in Section 8.3 it is reasonable to assume that the measurement accuracy can
be expressed in terms of a simple standard deviation proportional to an angular sensor accuracy, in the
discussion in Section 8.1.3, this is an unrealistic model, because the covariance matrices for the gravitational-
and magnetic-field measurements have cross terms and the diagonal elements are not all the same magnitude.
Moreover, in Section 8.1.3, the measurements are not unit-direction vectors and there is no reason to assume
that improved estimation results will be obtained by normalizing them. Umeyama’s algorithm can be used
with vectors of any magnitude.

An ad hoc adaptation of the cost function in (99) to the case in Section 8.1.3 is to set the set si to the
square root of the largest diagonal element in the covariance matrix associated with the ith measurement.
In the case of Section 8.1.3, the covariance matrix is for the model (“truth” is uncertain) rather than for the
measurement. The estimation technique is not necessarily globally optimal, but it is simple and requires no
iterations.

8.1.3 Estimation Accuracy

If orientation estimates obtained using Umeyama’s algorithm are going to be used in a recursive ori-
entation estimation, such as those based on variants of the Kalman filter considered in [51, 197], then a
covariance matrix or similar second-order information for the directional estimates is needed. The covari-
ance matrix will have to be tailored to the rotation representation chosen. (Rotation representations are
surveyed in [290].) Similarly, when fusing multiple orientation estimates, information on the accuracy of
the estimates is also desirable for optimal fusion. The fusion of orientation estimates is deemed the “gen-
eralized Wahba problem” in [292]. The problem of optimally representing the uncertainty in an orientation
estimate is inherently linked to the coordinate system used to represent the estimate uncertainty. In [161],
the pros and cons of various attitude representations with regard to data fusion are considered.

In [212, 289, 292, 293], various simple methods of estimating the covariance matrix associated with
orientation estimates are provided along with various orientation-estimation techniques. The covariance
matrix is the Fisher information matrix for the terms of an angular error vector of minute rotations about the
body x, y, and z axes. The vector is termed the “attitude-error vector” e and is explained in [290]. The Fisher
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information matrix is essentially a covariance matrix associated with the (assumed zero-mean) attitude-error
vector. The matrix is Etee

1u, where Etu is the expected value operator.

For the purposes of assessing the utility of a particular attitude-estimation algorithm in this report, it is
assumed that one wishes to determine how accurately one can orient themselves in the WGS 84 coordinate
system. Consequently, expressing the uncertainty in determining the location of the local ellipsoidal North
and up vectors is probably of more utility to a system designer than the expected value of the square of
the attitude-error vector. Thus, the orientation accuracy statistics used in Sections 8.2 and 8.3 are the mean
angular error of the ellipsoidal North and Up vectors determined using the estimated local-to-global rotation
matrix.

Let R̂ be the estimated rotation matrix from global coordinates into an observer’s local coordinates at
the point pf ,l ,hq in geodetic latitude, longitude, and height, and R is the true rotation matrix. In global
coordinates, the ellipsoidal North vector can be obtained using (26) to get u2, and the ellipsoidal up vector
can be obtained using (27) to get u3. Using (70), one can compute the magnitude of the angular distance
between the vectors Rui and R̂ui, where i is 2 or 3 to represent the error in the estimates of ellipsoidal North
and Up. Sections 8.2 and 8.3 average the angular errors in the North and Up directions over multiple Monte
Carlo runs to determine the average pointing accuracy in those directions.

8.2 Orientation Estimation from Magnetic and Gravitational Measurements

Whereas many view GPS as the non plus ultra of navigation technology, a GPS receiver with a single
antenna cannot provide estimates of the orientation of the platform on which it is located, though one can
estimate the heading of a moving vehicle over time. Though it is possible to estimate the orientation of an
object using a GPS receiver with multiple antennas, the technique has been patented [96, 355].

Joint magnetometer-accelerometers on a single chip have become increasingly inexpensive. Many cell
phones include such chips and consequently physicists have been increasingly using cell phones as sensors
in physics demonstrations/experiments. A bibliography of a number of such experiments is given in [192].
Inexpensive magnetometers, such as those in cell phones, can even be used, after appropriate magnetic
mapping, to perform indoor localization [125,127,317].68 Orientation estimation using gravitational and/or
magnetic-field measurements has been considered for use in applications including satellite-orientation es-
timation [369] and short-range projectile navigation [277]. Using the EMM2010 magnetic-field model,
mentioned in Section 7, and the EGM2008 gravitational model, mentioned in Section 5.4, along with rea-
sonably accurate, calibrated accelerometer and magnetometer measurements, one can easily determine the
orientation of a sensor in a global coordinate system without an initial estimate using Umeyama’s algorithm,
described in Section 8.1.1.

This subsection discusses how joint gravitational/magnetic-orientation estimation can be performed for
a sensor at a known location, and estimates the accuracy of the orientation estimates based on model lim-
itations. Model limitations rather than sensor-accuracy limitations are used, because, when cost and time
are no concern, the errors in the magnetic- and gravitational-field models are multiple powers of ten greater
than the most precise reported sensors.69 For example, in [268], it is mentioned that the magnetometer (a

68Though the concept of indoor magnetic sensor-based localization is appealing, the most logical methods for such localization
are covered by numerous patents including [122–124, 126].

69Even the fundamental physics on which gravitational models are based is often, at high precisions, inconsistent with obser-
vations. For example, measurements of the universal gravitational constant G using different techniques disagree with each other
outside of the measurement confidence intervals [232] and it is not known whether or not G slowly varies with time [47, 107, 343].
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superconducting quantum interference device [SQUID]) in the satellite named Gravity Probe B can measure
magnetic fields down to 5 ˆ 10´18 T when given enough time.70 Similarly, accelerometer precision as low
as 9.8 ˆ 10´13 m{s2 has been claimed [279].

Using the EGM2008 gravitational model and the EMM2010 magnetic-field model with the spherical-
harmonic synthesis routines discussed in Appendix F, one can obtain the theoretical magnetic-field vector
FB and the gravity-acceleration vector g of (55b), which is the theoretical acceleration felt by a stationary
observer on the surface of the Earth.71 From the EGM2008 model, one can obtain a covariance matrix S—V
for g. Unfortunately, no covariance matrix is available for the EMM2010 model. However, one can create
an ad hoc covariance matrix based upon the reported precision of the model.

The precision of the HDGM model, which one might expect to be comparable to the EMM2010 model,
is listed in [222]. However, for the purposes of this analysis, the precision estimates of the WMM in [223]
will be used instead. The reasons for using the “incorrect” WMM error model to analyze the EMM2010
are that except for localized disturbances, a large part of the errors are probably from the main field, and
the error model in [223] provides explicit standard deviations in local WGS 84 ENU Cartesian coordinates
for the WMM2005 model at the end of its valid period (in 2010). This can be the assumed accuracy of the
WMM2010 (or EMM2010 in this case), allowing one to easily construct a diagonal covariance matrix for
the estimate. The covariance matrix is

PENU
FB

“

»

—–
p61 ˆ 10´9q2 0 0

0 p58 ˆ 10´9q2 0
0 0 p101 ˆ 10´9q2

fi

�fl . (105)

The units of the entries of PFB are squared tesla and the covariance matrix is given in local ellipsoidal ENU
coordinates. For the purposes of the simulation in this section, the covariance matrix was represented in
global WGS 84 coordinates. The converted covariance matrix is given by

Pglobal
FB

“ RENU2GlobPENU
FB

R1
ENU2Glob. (106)

The rotation matrix from ENU to global coordinates was found by finding the vectors of the local ENU
coordinate axes using the formulae in Section 4.2, and noting that in local coordinates, East corresponds to
r1,0,0s1, North to r0,1,0s1, and Up to r0,0,1s1. Thus Umeyama’s algorithm can be used to get the transfor-
mation matrix. Note that the solution using Umeyama’s method in this instance is not an approximation.

To perform least-squares orientation estimation using a magnetic- and a gravitational-field measurement
(assuming that the precision of the sensor is significantly higher than the precision of the magnetic- and
gravitational-field models), if ĝ and F̂B are the measured, local gravity acceleration and magnetic field,
then, based on the discussion in Section 8.1.2, the inputs to Umeyama’s orientation-estimation algorithm of

70Cheaper and more practical than a SQUID is a chip-scale magnetometer. In [282], one is described as achieving a sensitivity
of 50 ˆ 10´9T {Hz (for time-varying magnetic signals).

71 If the observer were accelerating with respect to the rotating surface of the Earth, then g would have to be modified accordingly.
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Section 8.1.1 are the vectors Z̃ and Z,

Z̃ “
„

1
sB

Fglobal
B

1
s—V

gglobal
⇢

(107)

Z “
„

1
sB

F̂B
1

s—V
ĝ
⇢

(108)

sB “max
´

diag
´

Pglobal
FB

¯¯
(109)

s—V “maxpdiagpS—V qq (110)

where the final estimate R rotates a vector from the global coordinate system into the observer’s local coor-
dinate system, and the diag operator extracts the diagonal elements of the matrices. Note that while scaling
by sB and s—V has a minimal effect on the results, it can avoid numerical problems in implementations of
Umeyama’s algorithm near the magnetic poles where the magnetic field and gravitational field are nearly
aligned and the observability of the rotation matrix is poor.

Figure 30 plots the theoretical average angular error in a local observer’s estimates of ellipsoidal North
and Up based on gravity- and magnetic-field measurements. Gravity- and magnetic-field measurements
were corrupted by multivariate Gaussian noise whose accuracy was given by the aforementioned covariance
matrices. Using the EMM2010 and EGM2008 to get reference values, the observer could thus obtain a
transformation matrix from his local coordinate system to the global coordinate system and vice versa.
Using the formulae of Section 4.2, the direction of the local East-North-Up coordinates at the observer could
be determined. The plots are of the angular difference between the true directions of ellipsoidal “North” and
“Up” in the observer’s local coordinate system and the directions implied by the observer’s rotation matrix.

The observer’s “true” local coordinate system (the orientation of which had to be estimated) is defined
rotated from the local ENU system. The coordinate system is built by rotating 15˝ counterclockwise (right-
handed) about the local ENU x-axis and then rotating 15˝ counterclockwise about the rotated z-axis. In [55],
it is described how a rotation matrix can be constructed to perform a rotation about an arbitrary axis and
how multiple rotations can be concatenated.

As was the case in Section 5.4 for assessing the accuracy of the gravitational-field model, independent
realizations of the gravitational and magnetic fields were drawn based on the reported accuracies of the mod-
els to create the plots in Fig. 30. Umeyama’s model was run and (71) was used to average the magnitudes
of the deflections of an estimate of the direction of ellipsoidal North and an estimate of ellipsoidal Up as a
function of the observer’s location on the Earth.

From Fig. 30, it can be seen that the accuracies of the orientation estimates implied by the model
covariance matrices are sufficient for short-range estimation, but leave much to be desired for highly accurate
long-range sensing, where pointing errors on the order of 0.1˝ would be considered unacceptable. Note that
the scaling of the vectors is necessary to avoid finite precision limitations due to the difference in magnitude
between ĝ and F̂B and not just due to the varying accuracies of the measurements. The algorithm was
also run without adding noise, in which finite precision limitations produced errors less than 10´6 degrees
(0.0036 arcseconds) everywhere except in the vicinity of a magnetic pole, when the same scaling based on
covariance values was used. However, when the error-free values were used without scaling, the algorithm
sometimes failed as the matrix A in Umeyama’s algorithm did not have sufficient rank. Additionally, when
run without scaling, the errors were multiple powers of ten larger when the algorithm did not fail.
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Fig. 30: The angular offsets between the true ellipsoidal North (a) and Up (b) vectors and a local observer’s estimates of them
based on a gravity measurement and a magnetic-field measurement on a 256 ˆ 256 grid in latitude and longitude at an atltitude of
9km, assuming the observer stationary with respect to the surface of the rotating Earth. Latitude values only up to ˘85˝ were used.
The “true” gravity and magnetic-field measurement values were those given by the EGM2008 model used in Eq. (55b) and the
“true” magnetic-field model was given by the EMM2010 coefficients (at the 2010.0 epoch). The “noisy” values were those offset
by Gaussian noise whose covariance matrix was that inherent in the models. Thus, the plots represent the expected accuracy of the
models worldwide. One thousand Monte Carlo runs were performed. The true observer’s orientation at each place on the globe is
described in the text. The colors are clipped to 1˝ to accentuate errors far from the poles, where the errors can well exceed 1˝. Note
that the errors in the estimate of ellipsoidal North are not independent of those of ellipsoidal Up.

Because Umeyama’s algorithm is not actually optimizing over the true likelihood function of the data,
one might wonder whether the performance could be improved by performing likelihood maximization. The
likelihood function of the problem at hand is

ppĝ,F̂B|Rq“N
 

Rĝ;gglobal,S—V
(
N

!
RF̂B;Fglobal

B ,Pglobal
FB

)
(111)

where the notation N ta;b,cu refers to the Gaussian PDF evaluated at point a with mean b and variance (or
covariance matrix) c. The simplest method of maximizing the likelihood function (111) is to try different
rotation matrices R and to choose the one with the highest likelihood.

To determine whether likelihood maximization offered any benefits, points at 9km ellipsoidal height and
ellipsoidal latitude, longitude locations of p85˝,180˝q and p0.33˝,103.76˝q were considered. The first is a
point of high mean-error, as seen in Fig. 30, where the average error in North using Umeyama’s method
is 2.58˝ and the average error in Up is 0.23˝. The second point has low error, where the average error in
North using Umeyama’s method is 0.02˝ and the average error in Up is 0.07˝. The likelihood function of
(111) was maximized at those two points using a brute-force computation of 1,030,301 different variations
of R, the rotation matrix from local to global coordinates. The searched values of R were built by taking
Umeyama’s solution and perturbing it using a grid of Euler angles, with the values of each angle broken into
101 distinct points. For the high mean-error point, the grid of rotation angles went from ´3˝ to 3˝, leaving
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a fineness of 0.06˝. For the low mean-error point, the grid of rotation angles went from ´0.08˝ to 0.08˝,
leaving a fineness of 0.0016˝.

The three Euler angles define subsequent rotations about the x, y, and z axes. The rotations about the y
and z axes are about the respective axes after the previous rotations. The rotation matrix given by left-handed
Euler angles in x, y, and z of pf ,q ,yq are [290]

REuler “RZRY RX (112)

RZ “

»

—–
cospyq sinpyq 0

´sinpyq cospyq 0
0 0 1

fi

�fl (113)

RY “

»

—–
cospqq 0 ´sinpqq

0 1 0
sinpqq 0 cospqq

fi

�fl (114)

RX “

»

—–
1 0 0
0 cospfq sinpfq
0 ´sinpfq cospfq

fi

�fl . (115)

The rotation hypotheses were obtained by left-multiplying the rotation matrix obtained using Umeyama’s
algorithm with the Euler-angle-based perturbation matrix.

Averaged over 100 Monte Carlo runs performing the grid-search likelihood maximization,72 the re-
sults were no different from Umeyama’s algorithm, indicating that there is no benefit to performing addi-
tional likelihood maximization and that the limitations in the accuracies of the gravitational- and magnetic-
field models are limiting factors. Umeyama’s algorithm is considerably simpler than nonlinear maximum-
likelihood orientation-estimation techniques that are better known to the tracking community, such as [132].

From Fig. 30, one can see that orientation estimation using gravitational- and magnetic-field models is
very unreliable near the geomagnetic poles, where the gravitational vector and the magnetic-field vector are
nearly aligned. For that reason, Section 8.3 looks at high-precision orientation estimation using stars.

Note that if Umeyama’s algorithm were used with a real magnetometer and accelerometer, the sensor
would have to be calibrated with respect to the platform on which it is mounted. Part of this includes
estimating the magnetic bias of the platform itself, which is discussed in [5].

8.3 Orientation Estimation Using Stars

8.3.1 Describing the Algorithm

When high-precision pointing accuracy is required, then then one might wish to consider using stars or
reference satellites. As of 1985, optical star sensors with an accuracy of 10 µrad to 20 µrad (2 to 4 arc-
seconds) for satellite attitude determination were available [103], and typical sensor accuracies on satellites

72The algorithm was actually implemented to minimize the negative logarithm of the likelihood, discarding constant terms. In
other words, minimization of the Mahalanobis distances was performed.
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were still on the order of an arcsecond in 2001 [203]. The limitations to orientation estimation accuracy
using stars is explained in [36, Ch. 2.3.4], where it is noted that atmospheric turbulence limits optical mea-
surement accuracy to approximately 1 arcsecond for long exposures of ground-based sensors, though the
use of adaptive optics using laser guide stars can reduce the limiting resolution to the diffraction limit of the
telescope. Optical imaging compensating for atmospheric turbulence can be done using arrays of orthogo-
nal transfer charge-coupled devices (OTCCDs) with multiple telescopes pointed at guide stars [166]. If the
association of observed stars to stars in a star catalog is known, then the problem of direction estimation
is fairly simple as one can just apply Umeyama’s algorithm in the same manner as in Section 8.2 when
using gravitational- and magnetic-field measurements. However, the correct assignment of observations to
catalogued stars will generally not be known a priori.

In [248, 309], a number of algorithms for identifying stars are surveyed. The techniques generally try
to match geometric patterns among stars to a reference star catalog. Various data structures specialized for
searching the star catalog are utilized to speed up the algorithm. In [203], an overview of the hardware and
signal processing in a star tracker is presented. Of note is also the large number of patents that surround
techniques for orientation estimation using stars.73 For example, methods of determining the attitude and/or
location of a spacecraft or high-altitude aircraft using a star sensor are given in [26,167,168,181]. Similarly,
star-sensor-based attitude-estimation techniques for non-space-based observers are patented in [25,34]. Peo-
ple have even patented a method of optically observing the (known) locations of GPS satellites instead of
stars to determine the orientation of a satellite [181].

The problem of orientation estimation using catalogued stars overlaps with the problem of track-to-
track association that arises when fusing track estimates from multiple networked sensors. Interestingly it
appears that the communities interested in star identification for attitude estimation and the communities
interested in track-to-track association for data fusion do not share algorithms across fields. This section
presents a generic algorithm for star-based attitude estimation to demonstrate the role of coordinate systems
and similarities to aspects of common target-tracking algorithms. Thus, rather than designing an algorithm
that can efficiently provide an attitude estimate with no prior information at all, such as the “lost in space”
algorithms of [248, 309], this section discusses how a very coarse attitude estimate can be refined and how
one can (inefficiently) determine orientation without prior information based on a logic similar to that used
in track-to-track association algorithms and not beholden to a particular piece of hardware.

Two of the algorithms in the literature for track-to-track association that are most similar to popular
techniques in the space literature for associating observations to catalogued stars are [328, 374], as the
algorithms utilize the relative geometry of neighboring targets. However, these two algorithms are limited
by assumptions such as that one is working in a 2D Cartesian space and that any biases are purely additive. In
the star-to-catalog association problem, the number of entries in the catalog can be many orders of magnitude
larger than the number of tracks one would expect in a track-to-track association problem among multiple
radars. For example, as mentioned in [286], the Naval Observatory Merged Astrometric Dataset (NOMAD)
is over 100 gigabytes in size.74 Thus, track-to-track association algorithms have often focused on optimality
rather than speed. The majority of algorithms start from a Bayesian model of some sort. For example, a large

73Many patents cover star-based orientation-estimation devices, which can make it difficult for an engineer to design such systems
without paying royalties. However, the patent coverage in this area is much less of a burden than, for example, in the cell phone
industry. In [239], it is estimated that the typical $400 smartphone is subject to potential patent royalties averaging $120 and almost
equal to the cost of the components.

74NOMAD is a compilation of multiple star datasets. Instructions on how to access NOMAD are at http://
www.nofs.navy.mil/nomad/ .
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number of cost functions are derived in [316], where a fast-Fourier-transform (FFT) method is suggested to
remove 2D biases prior to association. In [190], maximum a posteriori cost functions are derived assuming
a zero-mean Gaussian prior distribution on additive biases. A Bayesian method involving a large number of
integrals is derived in [90], and in [249] a cost function expressed by taking the expected value over the bias
is given where the bias is modeled as additive having a zero-mean Gaussian prior distribution.

The technique chosen in this report for determining orientation using observations of stars is concep-
tually similar to the methods of [119, 199, 200], which condition a likelihood function on a bias estimate,
perform maximum-likelihood data association (in those instances track-to-track association, here associ-
ating observations to catalogued stars), and then estimate the “bias” given the associations, which in the
context of this report is the unknown sensor orientation.

The first step to determining one’s orientation using catalogued stars is to determine where the stars
should appear to be, given the time and one’s location. For the purpose of this discussion, the Hipparcos star
catalog, which can be obtained from the link in Table 2, is used. The determination of the predicted locations
where the stars should appear to an observer requires more than just the transformation of Fig. 6, because
the stars are catalogued in BCRS coordinates and one must account for parallax (transformation to GCRS
requires a shift of the origin), aberration (special relativity warps one’s perception of the star’s locations),
general relativistic bending of light, most notably due to the mass of the Sun, and atmospheric refraction.
All these effects are too complicated to review in this report. The reader is referred to the resources in Table
1. For the purposes of simulation in this section, the iauAtco13 function from the IAU’s SOFA library
was used to account for all of those effects and is documented to produce results with an accuracy of 0.05
arcseconds for optical observations, and 1 arcsecond for radio observations for zenith distances z † 70˝,
where the limiting factor is the low-fidelity atmospheric refraction model used.

Figure 31 shows how the predicted apparent locations of the stars in the sky move over time at two loca-
tions on Earth. It is important that a precise time be used when making stellar observations for orientation
estimation. To put things into perspective, as mentioned in Section 3.1, a stellar day, which is one rotation of
the Earth with respect to the fixed stars, is 86164.098903691s. That means the Earth is rotating 15.04 arc-
seconds per second.75 Consequently, if times are taken manually, rather than electronically with the image,
then the orientation-estimation bias can be expected to exceed the inaccuracy in the iauAtco13 function
by a factor of approximately 15.

Planets, the Moon, and the Sun can also be present in addition to stars. The Sun, Moon, and planet
locations can be obtained using the DE430 ephemerides and NASA’s SPICE toolkit, both available at the
links in Table 2. Note, however, that the cspice spkezr function in the current version (version N0064)
of the toolkit does not provide the directions of the celestial objects with respect to an observer on the Earth.
Rather, it provides them with respect to an observer at the center of the Earth. Thus, it is necessary to
iteratively perform parallax, aberration, and atmospheric refraction corrections, as described in Appendix I.
Aberration and the magnitude of the errors introduced by ignoring aberration are quantified in Appendix J,
since aberration due to special relativity is an often-overlooked cause of apparent measurement biases.

Having converted a catalog of star directions into the predicted observed directions given the observer’s
known location on the Earth and the time, then if observed stars can be associated with the predicted direc-
tions of the catalogued stars, Umeyama’s algorithm of Section 8.1.1 can be used to determine the observer’s

75In comparison, for an observer on the equator of the WGS 84 reference ellipsoid, assuming the rotation axis is perfectly aligned
with the z-axis, a 1s time bias adds the same orientation bias to stellar observations as moving 465m along the equator.
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Fig. 31: North pole azimuthal projections of stars on 1 January 2014 are plotted at 0:00, 0:05, 0:10, 0:15, and 0:20 UTC from two
different points on the Earth. The zenith distance z (see Fig. 13) plotted with respect to the WGS 84 vertical is the distance from
the center of the plot and goes from 0˝ to 25˝. The angle around the plot is degrees North of East in the local ENU coordinate
system. In (a), the observer is at the North pole. In (b), the observer is at 45˝ latitude (using the WGS 84 reference ellipsoid). In
both instances, the observer is at 0˝ longitude. The stars are those in the Hipparcos catalog. In (a), the North star is marked in
red. In (b), Jupiter is marked in red. In (a), the stars are moving clockwise with time, in (b), they are moving mostly right-to-left.
The functions iauPmsafe and iauAtco13 from the IAU SOFA library, among others, were used to perform the conversion of
the stars including parallax, proper motion, and a very simple refraction model for which an observation wavelength of 0.574 µm
(yellow light), zero humidity, standard atmospheric pressure of 101,325Pa, and a temperature of 15˝C were used. NASA’s SPICE
toolkit was used, as described in Appendix I, to find planet locations (only Jupiter is visible) and the refraction code from the IAU’s
SOFA library was used to add refraction to Jupiter.

orientation. The problem of associating observed stars to catalogued stars is where work from track-to-track
association algorithms can be used. To begin, the problem of associating stars to observations given a known
observer orientation is discussed.

Suppose that the orientation of the observer is known. One wishes to determine the most probable asso-
ciation of observed stars to catalogued stars. Appendix H derives a general score function for that purpose.
For the example in this section, a few additional assumptions are added for the simulation. Specifically, the
probability of detecting the tth star in the star catalog is assumed to be known to be Pt

D and detections are
taken in terms of spherical azimuth l and elevation qc in the local coordinate system, where detection is
performed on a grid of points in azimuth and elevation. No additional feature measurements, such as star in-
tensity or wavelength, are used. The false-alarm density per squared radian in azimuth-elevation is assumed
to be known and is given by lc, which should not be confused with azimuth. Based on the derivation in
Appendix H, the marginal additive cost of assigning catalogued star t to observation i is

DLt,i “

$
&

%
ln

ˆ
Pt

D
pt pzi|Ipq

lc

˙
if i ‰ 0

lnp1 ´ Pt
Dq if i “ 0

(116)
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where Ip is prior hypothesized information (irrelevant in this problem), and zi is the ith observation. If one
were to follow the method of [119, 199, 200], then pt would be some type of a Gaussian PDF. However,
due to the spherical nature of the measurements, a Gaussian PDF is not appropriate for this problem. For
example, the distance between an angular measurements of ´p ´ e and p ` e , for some small offset e ,
would be 2p ´ 2e rather than a more logical 2e .

A number of PDFs for the directional measurements in three dimensions are presented in [211]. How-
ever, due to the often high precision of star measurements (better than 20 µrad [103]), many common PDFs
for directional measurements are not suitable for use. For example, consider the Fisher distribution, also
known as the von Mises-Fisher distribution, which is unimodal on the unit sphere, and which can be written

pt pzi|Ipq “ k

2p pek ´ e´kqekupµ t q1upziq (117)

where the normalization constant is taken from the formula in [311], the unit vector upµ tq is the mean appar-
ent direction of the tth element in the star catalog, and upziq is the unit-direction vector associated with the
ith observation, which itself might be given in terms of azimuth and elevation. The value k is a concentration
parameter. The uncertainty is symmetrically distributed around the mean with the distribution increasing as
k increases. The problem with many common distributions on the unit sphere is that parameters such as
k must be extremely large for measurement errors to be on the order of 20 µrad, which leads to numerical
precision problems. This is demonstrated in Appendix K.

Thus, as opposed to using a circular distribution, a spherical generalization to the clipped mod normal
distribution introduced in [60] is chosen. Such a distribution clips the tails of the normal distribution (rather
than wrapping them back around) and uses something akin to a modulo function to avoid problems near the
˘p boundary in azimuth. The 2D clipped mod normal distribution for this problem is

pt pzi|Ipq “ 1
c1

e´ 1
2 wpzi´µ t q1P´1wpzi´µ t q (118)

where c1 is a normalization constant and the function w is defined

wpzi ´ µ tq ,
«

wwrappli ´ lt ,xmin,xmaxq
fi ´ ft

�
(119)

wwrappx,xmin,xmaxq ,modtx ´ xmin,xmax ´ xminu ` xmin (120)

where xmin “ ´p , xmax “ p . The function wwrap wraps the difference in azimuth values to the given range.
The function modpa,bq is the modulo operation (the remainder after division). For example, modp17,4q “ 1
and modp´5,4q “ 3.76 The elevation values do not need to be wrapped, as there is no discontinuity in their
scale. The matrix P is a covariance matrix and µ t is the azimuth-elevation vector of the tth entry in the star
catalog. If the measurements are very accurate (very little from the tails of the normal distribution is cut off),
the normalization constant can be approximated using the normalization constant of the equivalent normally
distributed random variable

c1 « k2pPk
1
2 (121)

76The mod command in Matlab performs the modulo operation.
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where the vertical bars indicate the matrix determinant operation. One would expect that in instances where
the approximation in (121) fails, the measurement would be sufficiently noisy that the von Mises-Fisher
distribution of (117) could be used without many numerical precision problems.

During simulation, it is convenient to simply generate the noise values as in (72); that is,

zsamp “ µ ` P
1
2 w (122)

where w is a 2 ˆ 1 random vector distributed N t0,Iu and P 1
2 is a lower-triangular Cholesky decomposition

of P. However, for observations near the poles, such noisy values will push the elevation measurement over
the pole. If that occurs, the elevation measurement should be brought back below the pole, and the latitude
measurement shifted by 180˝. Similarly, the latitude measurement can be pushed outside of the valid range,
which shall be assumed to be ˘p . Thus, if zsamp “ rl ,f s1, then it should be transformed as

zwrap
samp “

$
’’’’&

’’’’%

«
wwrappl ,´p,pq
arcsinpsinpfqq

�
ifmod

! |q |´ p

2
p

,2
)

° 1
«

wwrappl ` p,´p,pq
arcsinpsinpfqq

�
otherwise

(123)

before use. In practice, however, the field of view should be sufficiently small and the measurements suffi-
ciently accurate that (123) is not necessary.

Using (118) as the measurement PDF and discarding the constant term, the assignment cost function of
(116) becomes

DLt,i “

$
&

%
ln

ˆ
Pt

D
lcc1

˙
´ 1

2
wpzi ´ µ tq1 P´1wpzi ´ µ tq if i ‰ 0

lnp1 ´ Pt
Dq if i “ 0

(124)

where one can use the approximation of (121) for the normalization constant c1. The problem of assigning
observed stars to catalogued stars thus becomes the familiar 2D assignment problem from tracking: Each
catalogued star must either be assigned to a measurement or declared unobserved. Measurements that do
not associate with catalogued stars are assumed to be false detections or simply detections from things that
are not in the catalog. Given NT catalogued stars and NM measured stars, the 2D-assignment problem is
formulated as

X˚ “ argmax
X

NTÿ

t“1

NMÿ

i“1
ci, jxt,i (125)

subject to
NMÿ

i“1
xi, j “ 1 @i

Every catalogued star
is assigned.

(126)

NTÿ

t“1
xt,i § 1 @ j

Not every measurement is
assigned to a star.

(127)

xt,i P t0,1u @xi, j (128)
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where if xt,i “ 1, then catalogued star t is assigned to measurement i, and the cost matrix C, having elements
in row t and column i ct,i is

Assignment
Costshkkkkkkkkkkikkkkkkkkkkj

Missed Detection
Costshkkkkkkkkkkkkikkkkkkkkkkkkj

C̃ ,

»

————–

DL1,1 . . . DL1,NM DL1,0 ´8 . . . ´8
DL2,1 . . . DL2,NM ´8 DL2,0 . . . ´8

...
. . .

...
...

...
. . .

...
DLNT ,1 . . . DLNT ,NM ´8 ´8 . . . DLNT ,0

fi

����fl
.

(129)

The cost function arises from building the hypothesis cost of Appendix H using the marginal costs of adding
new measurements. The 2D-assignment problem can be optimally solved in polynomial time using the
shortest augmenting path algorithm of [53, 56], where the source code is also provided. For that reason the
solution of the problem is not explicitly described in this report.

Up until now, the problem of assigning measurements to stars assuming that the observer’s orientation
is perfectly known has been presented. If a reasonably accurate initial estimate of the orientation is known,
one could perform the above 2D assignment to determine which observations correspond to catalogued stars,
and then use Umeyama’s algorithm of Section 8.1.1 to estimate the orientation given the assignments. If the
measurement noise is distributed the same for all measurements and in all directions (P is diagonal), then
the s terms mentioned in Section 8.1.2 should be unnecessary and Umeyama’s algorithm should produce
the globally optimal orientation estimate given the assignment of stars to catalogued entries.

In general, however, the initial estimate of the orientation is likely to be fairly poor, such as when using
magnetic- and gravitational-field measurements as in Section 8.2. In such an instance, small biases can
be compensated by inflating P, as was done for Mahalanobis distances without circular statistics in [164].
In [164], it is shown that if the “bias” can be characterized as additive to the measurement and Gaussian with
zero mean, then one can just add the covariance matrix of the bias to the measurement covariance matrix.
Here, the bias is not additive, but one can inflate P in a similar ad hoc manner. On the other hand, if the
initial estimate is too bad, one might have to try multiple orientation hypotheses in a brute-force manner
using an inflated P. All together, an outline for an algorithm is the following:

1. Using the time, the observer’s location, and any available atmospheric data, convert the positions of
the catalogued stars into apparent star directions for an observer at the given location (for example use
the iauAtco13 function in the IAU’s SOFA library). The rotation between the apparent directions
of the stars, given, for example, in WGS 84 ellipsoidal ENU coordinates, and the local coordinate
system of the observer is to be found.

2. Inflate the measurement covariance matrix P an ad hoc amount, and perform 2D assignment of
observations to stars using the cost matrix in (129) and the globally optimal assignment algorithm
of [53,56], where the rotation matrix from global to local coordinates is either given by a single initial
estimate, or is done on a grid of initial estimates. The goal is to maximize the cost. The covariance
inflation is performed so that the initial estimate grid does not have to be too fine.

3. If a grid of initial orientation estimates was used in step 1, then choose the solution with the highest
cost to use in the next step.
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4. Given a solution to the 2D-assignment problem, compute the orientation estimate from Umeyama’s
algorithm of Section 8.1.1.

5. Redo the 2D-assignment problem using the new orientation estimate and the correct measurement
covariance matrix P.

6. Re-run Umeyama’s algorithm using the new assignment of measurements to catalogued stars.

The algorithm is re-run a second time, under the assumption that the orientation estimate from the first 2D
assignment set is sufficiently accurate that the optimal measurement-to-star assignment will be achieved.

The above method is conceptually similar to those of [119, 199, 200] in that it can be viewed as a joint
likelihood maximization algorithm over the orientation and the assignments. In [119, 199, 200], the track-
to-track assignment problem across sensors is considered. An unknown “bias” is added to the likelihood
function and maximization is performed over the bias and the assignments of tracks between sensors. In the
problem at hand, the unknown orientation is implicitly added to the likelihood function in (118). That is,
the values of the catalogued stars can be written as

µ t “ u´1 `
Ru

`
µ

ENU
t

˘˘
. (130)

That is, if the data in the catalog is given in local ENU coordinates, after adjusting for the receiver’s location,
time, and propagation effects, convert the orientation data into a unit vector. Then, rotate the unit vector
using the rotation matrix R. Subsequently, convert the rotated unit vector back into the coordinate system of
the orientation measurement in the receiver’s coordinate system. Thus, the µ t in (124) implicitly includes
the unknown rotation matrix R.

In [199,200], the unknown “bias” is solved using a greedy pattern-based assignment algorithm, whereby
multiple assignment hypotheses are formed and pruned.77 The approach described in this report is more
similar to the track-to-track association method of [119]. Note, however, that [119, 199, 200] probably will
not work well given no prior information on the observer’s orientation. Indeed, the algorithm described here
will be very slow if no prior information is provided as the programmer must design the algorithm to do
a grid search over a very large number of orientation hypotheses. In such an instance, one of the “lost in
space” algorithms described in [248,309] is best used to obtain an initial estimate, though the necessary data
structures for such an algorithm to operate efficiently can be tedious to program.

8.3.2 Demonstrating the Algorithm

To demonstrate the algorithm for determining one’s orientation using a star catalog, an example of
orientation determination using parameters that are realistic for a smartphone is presented. Programs such
as SkyView [205] and Star Chart [80] for the iPhone use GPS data, the phone’s camera, and compass
and accelerometer information to help tell the user which stars they might be looking at. Such programs

77In [199, 200], a pattern-based assignment algorithm is compared to a 2D assignment-based method, whereby the pattern-
based method is shown to be better. The algorithm described in this report is not the same as the 2D-assignment method used for
comparison in [199, 200], because the authors did not perform a search over the bias (unknown orientation), thus leading to poor
results. The concept of pattern matching for sensor registration as in [199, 200] is similar to the “lost in space” algorithms used for
orientation estimation in space literature [248, 309], which are not presented in this report.



Coordinate Systems for Target Tracking 91

generally overlay a map of stars onto stars shown through the phone’s camera or show their own map aligned
with stars that one could see looking past the phone. However, the fact that such programs actually work well
enough for a user to easily identify which catalogued stars correspond to stars in the sky demonstrates that
initial orientation estimates derived from magnetic and gravitational readings should provide a sufficiently
accurate initial orientation estimate such that one can achieve good automatic star-to-catalog assignments
without doing a very extensive grid search of possible orientation hypotheses and without using a “lost-in-
space” algorithm to determine one’s orientation with no prior information whatsoever.

For the purpose of the simulation here, the parameters for an inexpensive cell phone camera are used.
As an example, certain parameters from the iPhone 5S camera are used. Its parameters are not all explicitly
in Apple’s developer documentation, but application programming interfaces (APIs) are available to query
the values of the various parameters and one can use exchangeable image file format (EXIF) data from
photographs taken by the camera to find parameters such as the focal length of the lens. The relevant
parameters are pixels 1.5 µm wide, a resolution of 3264 ˆ 2448 pixels, and a focal length of 4.12mm. This
means that the sensor is 4.895mm ˆ 3.672mm in size. Using the equation from [179, Ch. 2.2] for the
angular width of the field of view of a camera when focused on something at an infinite distance,

a “ 2arctan
ˆ

d
2 f

˙
(131)

where f is the focal length of a lens and d is the height of the sensor behind the lens. This says that the
angular field of view of the iPhone camera is 0.7543radˆ0.5776rad (or 43.2187ˆ33.0920˝). Dividing the
angular field of view by the number of pixels, one finds a pixel size of p0.23mrad ˆ 0.24mradq (47.7 ˆ 48.7
arcseconds). In an ideal imaging system without lens defects and free of optical aberration, the mapping
of pixels to degrees in spherical coordinates is not perfectly uniform across a flat sensor due to Petzval
curvature [179, Ch. 3.1.4]. One solution to the problem is to use a curved sensor. Another is to use a field
flattening lens [179, Ch. 3.1.5]. While there is no evidence that cell phone cameras use a curved sensor or
field flattening lenses, for the purposes of this simulation, it is assumed that there is no Petzval curvature and
the pixels linearly map to locations in the field of view in spherical coordinates.

Consider observers at two locations on the Earth. The first is located on the surface of the WGS 84
reference ellipsoid at an ellipsoidal latitude and longitude of p´22.5˝,180˝q (in the Pacific Ocean in the
general vicinity of Tonga and Fiji). The second is located at p45˝,180˝q (South of the Aleutian Islands
between Alaska and Russia). The “true” orientation of the observer in both locations is defined with respect
to the local ellipsoidal ENU coordinate system. The observer’s orientation is obtained by rotating 60˝

counterclockwise (a right-handed rotation) about the x-axis followed by a counterclockwise rotation of 15˝

about the rotated z-axis. The orientation is of a high enough elevation that the ground should not be within
the field of view of the observer. The field of view of the observer is that associated with an iPhone camera,
to use typical parameters. The time of the observation is taken to be 1 June 2014 at 0:00 UTC. Under those
parameters, the Hipparcos catalog lists 8027 stars that would be in the field of view of the first observer (after
accounting for refraction using the function iauAtco13 in the IAU’s SOFA library) and using NASA’s
SPICE toolkit with the DE 430 ephemerides, there would be two planets in the field of view (asteroids and
non-Earth moons were not considered).

However, a camera is not infinitely sensitive and can not necessarily detect very dim stars, especially
when there is a lot of light pollution from a nearby city. The Hipparcos catalog (version 311) provides
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star magnitude information along with star locations. The catalog provides the “Hipparcos magnitude,”
which is a weighted measure of the brightness of a star in wavelengths from 340nm to 850nm outside of
the atmosphere and is documented to be similar to standard visual “V” scale magnitudes. The Hipparcos
magnitude along with its relation to other visual magnitude systems is described in the survey paper [27].
However, the survey does not relate the magnitudes to what one can be expected to see with the naked eye.
In [133], it is mentioned that the dimmest star one can see in the visual scale is approximately magnitude 6.
Smaller magnitudes correspond to brighter stars. For the purpose of the simulation, celestial bodies above
magnitude 6 are discarded, leaving 343 stars and one planet (Uranus) in the first observer’s field of view.
The visual magnitudes of the planets were taken from [70, Ch. E].78

Figure 32 displays the stars in the simulated first observer’s field of view without missed detections and
false alarms. To test the orientation-estimation algorithm described in Section 8.3.1, it is assumed that one
has determined the detection probability of the sensor to be approximately PD “ 0.8 for all of the stars. In
reality, one would expect the detection probability to be lower for stars with higher magnitudes (dimmer
stars). It is also assumed that the average number of false detections in the scene is 25. This implies
that lV “ 25, so l “ 25{p0.7543rad ¨ 0.5776radq “ 57.38rad´2, where the terms in radians are the extent
of the viewing region in radians in azimuth and elevation. A rough approximation of the measurement
accuracy is to assume that regardless of whatever centroiding79 might be done to turn adjacent pixels into
a single star measurement, the measurement components in azimuth and elevation are independent and the
standard deviations of the components are the same as the uniform distribution over a pixel. This results in
a measurement covariance matrix of

P “ diag
ˆ

1
12

p0.23 ˆ 10´3q2,
1

12
p0.24 ˆ 10´3q2

˙
. (132)

For the simulation, it is assumed that the stars are all well resolved and that the best available gravitational-
and magnetic-field measurements are available. The parameters of Section 8.2 are used. From the biases
in estimating ENU Up and North illustrated in Fig. 30, which are based on the model inaccuracies, it is
reasonable to assume that one can obtain an inexpensive magnetometer/accelerometer chip where direction
estimation is primarily limited by the quality of the Earth’s magnetic and gravitational models and not by
the precision of the chip itself.

Using the aforementioned parameter for the true observer’s orientation and the field of view, if one were
to run a simulation of the star-based orientation algorithm using a magnetic and gravitational measurement
as an initial estimate in the algorithm of Section 8.3.1 without inflating P in the estimation routine, it is quite
likely that the star-to-catalog assignment algorithm would produce no assignments at all and one could not
estimate the orientation using the stars.80 However, for the purposes of the first iteration of the simulation,
the inflated value of

Pinflated “ diag
ˆ´

0.2 ˆ p

180

¯2
,
´

0.2 ˆ p

180

¯2
˙

(133)

78Note that the “apparent magnitude” of a star includes the effects of the atmosphere. For the purpose of this simple example, no
atmospheric losses were taken into account.

79Centroiding is a weighted average of neighboring pixels that exceed a detection threshold. A centroiding technique is given
in [20].

80Note that the field of view used for the estimation algorithm, given a low-precision initial orientation estimate, will not match
the true field of view because the estimated field of view depends on the estimated orientation. Thus, stars at the edges of the true
viewing area can be cut off and non-visible stars might be present in the estimated viewing area.
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Fig. 32: The field of view of the first observer (in the South Pacific) for the example star-based orientation-estimation problem
described in the text without false detections and missed detections. The coordinates are spherical coordinates from the center of
the observer’s field of view. Only stars and planets with a magnitude § 6.0 are displayed. Only one planet, Uranus, is visible and
is marked in red.

is used for the first observer; that is, a standard deviation of 0.2˝ is used in azimuth and elevation. For the
second observer, the inflation is 0.5˝. Using an inflated covariance like (133) for the first observer in the first
iteration, the algorithm never failed in any Monte Carlo runs.

Table 12 summarizes the results of the algorithm run over 1000 Monte Carlo runs on the example de-
scribed in this section. The accuracy in estimating the WGS 84 ellipsoidal North and Up vectors is shown.
The use of moderate-precision star measurements greatly improved estimates of North in a WGS 84 ellip-
soidal context, though not necessarily the estimates of the Up direction. The close agreement of ellipsoidal
up with gravitational up in Fig. 21 at moderate latitudes and the relatively high accuracy of the measure-
ments as shown in Fig. 22 explain why star-based orientation estimation with a low-fidelity camera might
provide a worse estimate of the vertical direction than that obtained from a high-precision accelerometer
measurement. Thus, when using moderate fidelity optical measurements of the stars, one might wish to use
an orientation-estimation algorithm that fuses gravitational data with celestial measurements.

The second observer (near the Aleutian Islands) had a slightly worse initial estimate than the first ob-
server, because as illustrated in Fig. 30, the models are less accurate near the poles. Had the observer been
pushed up to 60˝ latitude, the simulation would likely have not been able to complete a full 1000 Monte
Carlo runs, because in at least one run, the 2D-assignment algorithm would have been unable to assign
enough stars to catalogued stars to obtain an initial estimate. In such an instance, one would have to perform
a brute-force search over initial estimates. Thus, close to the magnetic poles, as well as in a region of the
South Atlantic where the magnetic field is weaker, initial orientation estimates using magnetic and gravi-
tational measurements will generally not provide usable initial estimates for the algorithm demonstrated in
this subsection.

In the example provided, the Sun and Moon happened to not be in the viewing region. When the Sun and
Moon are visible, one might worry that they might block a significant number of stars. However, the Sun
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Table 12: Orientation Estimation Errors
53

Observer 1 Observer 2
North Error Up Error North Error Up Error

No Stars 472.84 1.8969 550.91 9.6405
Single Iteration 15.357 12.986 71.720 67.505
Two Iterations 2.8997 2.8173 6.0104 5.6760

TABLE XII
THE AVERAGE ANGULAR ERROR (IN ARCSECONDS) IN ESTIMATING THE

DIRECTIONS OF WGS 84 ELLIPSOIDAL NORTH AND UP USING THE
STAR-BASED ORIENTATION-ESTIMATION ALGORITHM WITH MAGNETIC

AND GRAVITATIONAL-SENSOR READINGS AS THE INITIAL ESTIMATE.
OBSERVER 1 IS AT ´22.5˝ LATITUDE, OBSERVER 2 AT 50˝ . THE

ESTIMATES ARE MADE USING ONLY MAGNETIC AND GRAVITATIONAL
MEASUREMENTS (NO STARS), USING ONE ITERATION OF THE ALGORITHM

OF SUBSECTION VIII-C1 (SKIPPING STEPS 5 AND 6) AND USING TWO
ITERATIONS (RUNNING THE FULL ALGORITHM). THE MEASUREMENT
ACCURACY IS ON THE ORDER OF THAT OF A CELL PHONE CAMERA,

THOUGH THE DETECTION SENSITIVITY MIGHT BE HIGHER THAN ONE
WOULD EXPECT WITH A CELL PHONE CAMERA. THE OTHER PARAMETERS

ARE GIVEN IN THE TEXT.

stars.78 However, for the purposes of the first iteration of the
simulation, the inflated value of

Pinflated “ diag

ˆ´
0.2 ˆ �

180

¯2
,
´
0.2 ˆ �

180

¯2
˙

(133)

is used for the first observer; that is, a standard deviation of
0.2˝ is used in azimuth and elevation. For the second observer,
the inflation is 0.5˝. Using an inflated covariance like (133)
for the first observer in the first iteration, the algorithm never
failed in any Monte-Carlo runs.

Table XII summarizes the results of the algorithm run over
1, 000 Monte-Carlo runs on the example described in this
section. The accuracy in estimation the WGS 84 ellipsoidal
North and up vectors is shown. The use of moderate-precision
star measurements greatly improved estimates of North in
a WGS 84 ellipsoidal context, though not necessarily the
estimates of “up.” The close agreement of ellipsoidal up with
gravitational up in Fig. 22 at moderate latitudes and the
relatively high accuracy of the measurements as shown in
Fig. 23 explain why star-based orientation estimation with
a low-fidelity camera might provide a worse estimate of the
vertical direction than that obtained from a high-precision ac-
celerometer measurement. Thus, when using moderate fidelity
optical measurements of the stars, one might wish to use an
orientation-estimation algorithm that fuses gravitational data
with celestial measurements.

The second observer (near the Aleutian Islands) had a
slightly worse initial estimate than the first observer, because
as illustrated in Fig. 31, the models are less accurate near
the poles. Had the observer been pushed up to 60˝ latitude,
the simulation would likely have not been able to complete a
full 1, 000 Monte-Carlo runs, because in at least one run, the
2D-assignment algorithm would have been unable to assign
enough stars to catalogued stars to obtain an initial estimate.
In such an instance, one would have to perform a brute-
force search over initial estimates. Thus, close to the magnetic

78Note that the field of view used for the estimation algorithm, given a
low-precision initial orientation estimate, will not match the true field of view
because the estimated field of view depends on the estimated orientation. Thus,
stars at the edges of the true viewing area can be cut off and non-visible stars
might be present in the estimated viewing area.

poles, as well as in a region of the South Atlantic where the
magnetic field is weaker, initial orientation estimates using
magnetic and gravitational measurements will generally not
provide usable initial estimates for the algorithm demonstrated
in this subsection.

In the example provided, the Sun and Moon happened to not
be in the viewing region. When the Sun and Moon are visible,
one might worry that they might block a significant number
of stars. However, the Sun and Moon are both on the order of
30 arcminutes in diameter. Thus, unless using a sensor with
a very narrow viewing angle, or a sensor that is blinded by
having the Sun in the viewing region, neither celestial body
would be expected to interfere significantly with the detection
method (not counting atmospheric scattering during the day
preventing one from seeing the stars in the visible spectrum).

When performing particularly high-fidelity direction estima-
tion, a number of additional physical effects need to be taken
into account. In [184], it is shown that numerous corrections
for the effects of relativity need to be taken into account to
achieve microarcsecond precision.

IX. CONCLUSION

This report reviewed common celestial and terrestrial coor-
dinate systems and the international organizations that define
them. Sources of data and code for concrete realizations
of major celestial and terrestrial coordinate systems were
provided. Unlike often implied in the tracking literature, the
conversion from an ECEF to an ECI coordinate system is
not a fixed transformation. Rather, a high-precision conversion
requires Earth-orientation parameters that must be monitored
in real time.

When considering measuring heights near the surface of
the Earth, gravity plays a major role both in the definition
of orthonormal heights, which are commonly used on maps
and for specifying terrain heights. Gravity also plays a role in
models for air-pressure altitudes. Often, a nominal ellipsoidal
approximation to the Earth is used to define a local ENU
coordinate system. The magnitude of the deflection of the
vertical from gravitational up compared to ellipsoidal up was
quantified along with the accuracy of the estimates. The
degree to which tides move the surface of the Earth and
change the gravitational potential of the Earth was quantified.
Inconsistencies in published descriptions of tide models were
also highlighted as well as the fact that one cannot recreate
a full, high-precision gravitational tide model from published
results alone.

Due to the prevalence of inexpensive magnetic sensors
(compasses), the accuracy of the best freely available Earth
magnetic-field model was considered. It was shown that large
small-scale deviations that are significant enough to be charted
on an FAA map are not adequately modeled. However, the
model is sufficiently accurate away from land to be of use for
oil companies to steer their drills.

The concepts of multiple sections were then brought to-
gether to tackle the orientation-estimation problem. That is,
how can an observer determine in which direction he is
looking? The algorithm of Umeyama is a simple, computation-
ally efficient manner for determining the affine transformation

The average angular error (in arcseconds) in estimating the directions of WGS 84 ellipsoidal North and Up using the star-based
orientation-estimation algorithm with magnetic and gravitational-sensor readings as the initial estimate. Observer 1 is at

´22.5˝ latitude, observer 2 at 50˝. The estimates are made using only magnetic and gravitational measurements (no stars),
using one iteration of the algorithm of Section 8.3.1 (skipping steps 5 and 6) and using two iterations (running the full

algorithm). The measurement accuracy is on the order of that of a cell phone camera, though the detection sensitivity might be
higher than one would expect with a cell phone camera. The other parameters are given in the text.

and Moon are both on the order of 30 arcminutes in diameter. Thus, unless using a sensor with a very narrow
viewing angle, or a sensor that is blinded by having the Sun in the viewing region, neither celestial body
would be expected to interfere significantly with the detection method (not counting atmospheric scattering
during the day preventing one from seeing the stars in the visible spectrum).

When performing particularly high-fidelity direction estimation, a number of additional physical effects
need to be taken into account. In [184], it is shown that numerous corrections for the effects of relativity
need to be taken into account to achieve microarcsecond precision.



Coordinate Systems for Target Tracking 95

9. CONCLUSION

This report reviews common celestial and terrestrial coordinate systems and the international organiza-
tions that define them. Sources of data and code for concrete realizations of major celestial and terrestrial
coordinate systems are provided. Contrary to what is often implied in the tracking literature, the conver-
sion from an ECEF to an ECI coordinate system is not a fixed transformation. Rather, a high-precision
conversion requires Earth-orientation parameters that must be monitored in real time.

When considering measuring heights near the surface of the Earth, gravity plays a major role in the
definition of orthonormal heights, which are commonly used on maps, and for specifying terrain heights.
Gravity also plays a role in models for air-pressure altitudes. Often, a nominal ellipsoidal approximation
to the Earth is used to define a local ENU coordinate system. The magnitude of the deflection of the
vertical from gravitational up compared to ellipsoidal up was quantified here along with the accuracy of the
estimates. The degree to which tides move the surface of the Earth and change the gravitational potential of
the Earth was quantified. Inconsistencies in published descriptions of tide models were also highlighted, as
was the fact that one cannot recreate a full, high-precision gravitational tide model from published results
alone.

Due to the prevalence of inexpensive magnetic sensors (compasses), the accuracy of the best freely
available Earth magnetic-field model was considered. It was shown that large small-scale deviations that
are significant enough to be charted on an FAA map are not adequately modeled. However, the model is
sufficiently accurate away from land to be of use for oil companies to steer their drills from offshore oil rigs.

The concepts discussed were then brought together to tackle the orientation-estimation problem. That
is, how can an observer determine in which direction he is looking? The algorithm of Umeyama is a simple,
computationally efficient manner for determining the affine transformation between two coordinate systems
given vectors in both systems. When the vectors are error free, the algorithm is exact, allowing one to avoid
often tedious computations of rotations between systems. When the vectors are corrupted by noise, the
algorithm is approximate. The algorithm was applied to the problem of estimating one’s orientation using
magnetic and gravitational sensors, where it was shown that the inaccuracies in existing magnetic-field and
gravitational models are multiple orders of magnitude larger than the accuracy of the best sensors.

The problem of determining one’s orientation using stars brings together celestial and terrestrial coordi-
nate systems. When gravitational and magnetic estimates are used to obtain an initial orientation estimate,
then almost all of the concepts of the report come into play. The star-based orientation-estimation problem
can be viewed as another form of the general track-to-track association problem that is familiar to those
designing target-tracking algorithms. The problem was solved in the report in a manner very similar to
existing track-to-track association methods. However, those performing target tracking should consider the
extensive literature on star-to-catalog association routines, which generally take a very different approach
to the association problem than is traditionally used by the tracking community. It was shown that when
using a moderate-fidelity optical sensor, the estimate of the local vertical might be worse than simply using
a gravitational measurement. On the other hand, due to the poor quality of magnetic field sensors, it is
generally much better to use star measurements.

The astronomical community has very detailed definitions of celestial and terrestrial coordinate systems
that are often overlooked by those designing target-tracking algorithms. When the highest track precisions
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are required, especially for tracking high-speed orbital objects, coordinate-system definitions with strict def-
initions consistent with relativistic physics are necessary. The tracking community has generally neglected
such strict definitions in the literature.

This report brings together many existing concepts found in the literature, that are needed to define and
determine the accuracy of a radar system. It also highlights a number of details that are not present in the
literature:

1. It is shown that techniques for sensor registration in the target tracking literature and for sensor orienta-
tion estimation in the space literature solve the same problems and can be shared between disciplines.

2. The accuracy of pointing estimation from gravitational and magnetic field models is quantified. The
accuracy is limited due to the due to limitations in the accuracy of the models themselves.

3. The changes in gravitational acceleration and the deflection of the vertical due to time-variant tidal
components is quantified.

4. Expressions for the gravitational-acceleration covariance matrix associated with spherical-harmonic
coefficient standard deviations are derived in Appendix F.3.

5. The significant deviation between the EMM2010 and the direction of magnetic North near Ab-
erdeen Proving Ground according to the FAA’s charts is noted, indicating a high unreliability in the
EMM2010 in certain localized areas.

6. The score function is modified to allow the detection domain to be different than the measurement
domain in Appendix H.

7. Maps of organizational relationships are given in Figures 2, 8, and 24.
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Appendix A

ACCELERATING REFERENCE FRAMES AND THE CORIOLIS EFFECT

To better demonstrate why tracking in an inertial coordinate system is often desirable, this appendix de-
rives the “phantom” forces that arise when a non-inertial coordinate system is used. Dynamic models under
Newtonian mechanics are used. The problem becomes significantly more complicated when considering
the use of non-inertial coordinates in relativity theory. A solution under special relativity theory (using the
clock hypothesis) for an accelerated, rotating frame of reference is given in [242].

As illustrated in Fig. A1, a non-inertial coordinate system is defined at a particular time by an offset l
and the positions of three unit vectors that define its three coordinate axes ũx, ũy, and ũz. Under Newtonian
mechanics, following the development in [322, Ch. 7], the relationship between a target in the inertial
system specified r and that in the non-inertial system r̃ “ rr̃x, r̃y, r̃zs1 is

r “ l `
ÿ

iPtx,y,zu
r̃iũi. (A1)

The first and second derivatives of this with respect to time are thus

9r “ 9l `
ÿ

iPtx,y,zu
9̃riũi `

ÿ

iPtx,y,zu
r̃i 9̃ui (A2)

:r “:l `
ÿ

iPtx,y,zu
:̃riũi ` 2

ÿ

iPtx,y,zu
9̃ri 9̃ui `

ÿ

iPtx,y,zu
r̃i:̃ui. (A3)

Since 9̃ui represents a rotation, and the same rotation must be applied to all axes to keep them orthogonal,
one can write

9̃ui “ W ˆ ui, (A4)

where the direction of W is the axis of rotation and the magnitude of W is the rotation rate w in radians per
second, which can be determined to a high precision using the length-of-day (LOD) Earth orientation pa-
rameter (EOP) as in Eq. (2). When converting velocities between coordinates in the International Terrestrial
Reference System (ITRS) and the Geocentric Celestial Reference System (GCRS), the direction of W is the
z-axis in the Terrestrial Intermediate Reference System (TIRS), a system between the ITRS and GCRS.

The TIRS is the ITRS perturbed by a polar motion rotation matrix, which is determined using the polar
motion coordinates, which are two additional EOPs. Using the International Astronomical Union’s (IAU’s)
Standards of Fundamental Astronomy (SOFA) library, the polar motion matrix to go from the ITRS to the
TIRS can be found using iauPom00, which requires the Terrestrial Intermediate Origin (TIO) locator,
which one can get using the iauSp00 function. From Figure 6, it can be seen that one can obtain a unit
vector along the axis of rotation in the ITRS by multiplying the vector r0,0,1s1 by the polar motion matrix
W.
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uz

ux

uy

r

ũz

ũx

ũy

r̃
l

Target

Fig. A1: The inertial coordinate system is defined by the standard orthogonal x-, y-, and z-axes, which can be defined by three
unit vectors ux, uy, uz. This non-inertial, possibly rotating coordinate system is offset by the vector l and is defined by three other
orthogonal unit vectors ũx, ũy, ũz (expressed in the inertial coordinate system).

Using (A4),

:r “:l `
ÿ

iPtx,y,zu
:̃riũi ` 2

ÿ

iPtx,y,zu
9̃riW ˆ ui `

ÿ

iPtx,y,zu
r̃i

d
dt

tW ˆ uiu . (A5)

Note that
ÿ

iPtx,y,zu
r̃i

d
dt

tW ˆ uiu “
ÿ

iPtx,y,zu
r̃i

´
9W ˆ ui ` W ˆ pW ˆ uiq

¯
. (A6)

Using (A6) and the definitions of the position, velocity, and acceleration of the target as seen by an observer
in the non-inertial coordinate system,

r̃ ,
ÿ

iPtx,y,zu
r̃iũi (A7)

9̃r ,
ÿ

iPtx,y,zu
9̃riũi (A8)

:̃r ,
ÿ

iPtx,y,zu
:̃riũi. (A9)

Eq. (A5) can be rewritten asA.1

:̃r “ :r ´:l ´ 2

Coriolis
Accelerationhkkikkj

W ˆ 9̃r ´

Centrifugal
Accelerationhkkkkkikkkkkj

W ˆ pW ˆ r̃q´ 9W ˆ r̃. (A10)

A.1Note that :l remains in the original inertial coordinate system.
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Thus, if an observer is thought to be in an inertial coordinate system and uses only the inertial accelera-
tion term, :r in the dynamic equations, a dynamic mismatch equivalent to all of the other terms shown will
be observed. This mismatch is the cause of the Coriolis effect [294]. The Coriolis effect is the velocity-
dependent phantom acceleration that an observer at a fixed location on the Earth (:l “ 0) observes acting on
a ballistic target assuming that the axis of rotation of the Earth is constant during the period of observation
( 9W “ 0).
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Appendix B

CONVERTING FROM CARTESIAN TO GEODETIC ELLIPSOIDAL COORDINATES

This appendix is taken in part from an appendix of an article discussing the use of flat-Earth dynamic
models on a curved Earth [58, Appen. B]. The conversion from Cartesian px0,y0,z0q to ellipsoidal pf ,l ,hq
coordinates is a difficult problem. A table of 80 references addressing the topic is given in [88]. Generally,
an explicit, numerically stable solution is the most desirable. In this appendix, the solution of [305], which
is a stabler form of [304], is reviewed. Note that [305] is similar to [351], which is a stabler form of [350].

When using typical parameters for the Earth’s ellipse, it is noted in [304,305] that this conversion is valid
for all points outside of a small ellipsoid around the center of the Earth, whose radius is about 43km. (The
same restriction applies to [350, 351].) Considering that no one has ever managed to drill through the 6km
of crust of the Earth to reach the mantle, though it might be technically feasible [325], this restriction is in
practice meaningless for all applications of this coordinate conversion outside of, perhaps, seismic research.

It is assumed that the semi-major axis a and semi-minor axis b of the reference ellipsoid are known and
that the reference ellipsoid is centered on the Cartesian origin. The latitude, longitude, and ellipsoidal height
are given by

f “arcsin

˜
z
`
e

2 ` 1
˘

Ne

¸
(B1)

l “arctan2py0,x0q (B2)

h “r0 cospfq ` z0 sinpfq ´ a2

Ne
, (B3)

where the terms in Eqs. (B1) and (B3) are given by computing

e2 “1 ´ b2

a2 e

2 “a2

b2 ´ 1 (B4)

r0 “
b

x2
0 ` y2

0 p “|z0|
e

2 (B5)

s “ r2
0

e2
e

2 q “p2 ´ b2 ` s (B6)

u “ p?q
v “b2u2

q
(B7)

P “27
vs
q

Q “
´?

P ` 1 `
?

P
¯ 2

3 (B8)

t “1
6

`
1 ` Q ` Q´1˘

c “
b

maxp0,u2 ´ 1 ` 2tq (B9)

w “c ´ u
2

(B10)

101



102 David Frederic Crouse

z “signpz0q?
q

˜
w `

d

max
ˆ

0,
a

t2 ` v ´ uw ´ t
2

´ 1
4

˙¸
(B11)

Ne “a

c
1 ` e

2z2

b2 . (B12)

The term e is known as the first numerical eccentricity; e is the second numerical eccentricity. The sign
function returns 1 for a positive argument, ´1 for a negative argument, and 0 for a zero argument. The max
operators in (B11) and (B9) are to safeguard against taking the square root of a negative value in the face of
finite precision limitations.

The four-quadrant inverse tangent in (B2) is not uniquely defined at the poles (when x “ 0 and y “
0). However, many implementations of the four-quadrant inverse tangent, such as the atan2 function in
Matlab, will return zero in that instance. On the other hand, the ArcTan function in Mathematica correctly
returns an indeterminate quantity. In a practical system, it is often preferable for a zero longitude to be
returned at the poles rather than an indeterminate value.



Appendix C

EXPLAINING THE RELATIVISTIC TIME DILATION PLOT

A number of simple approximations were made to create Fig. 10, plots of the bias of a satellite-borne
clock compared to a clock at geocentric coordinate time (TCG) due to relativistic time dilation. First, a
spherical-Earth approximation is used and the effects of other celestial bodies are ignored. Second, the
Newtonian approximation to the gravitational potential U at point r outside the Earth,

Uprq “ GMJ
krk (C1)

is used where krk is the magnitude of the position vector r and the origin of the coordinate system is assumed
to coincide with the center of the Earth. The values GMJ are the universal gravitation constant times the
mass of the Earth. The value for GMJ from Table 5 is used. Note that the gradient of (C1) provides Newton’s
law of universal gravitation.

Basic (non-perturbed) orbital parameters describe the orbit of an object if the Earth were a perfect airless
sphere and no other massive objects were present. They are described in detail in [29, Ch. 4] and [19, Ch.
1, 4]. The speed of a satellite in a circular orbit at a particular altitude can be easily derived from Keplerian
orbital parameters to obtain

vsat , k9rsatk “
d

GMJ
krsatk

, (C2)

where 9rsat is the velocity of the satellite. On the other hand, an observer at the equator would be traveling at
a speed of vJ “ rJwJ, where rJ and wJ are, respectively, the radius of the Earth and the rotational velocity
of the Earth in the World Geodetic System 1984 (WGS 84) coordinate system as given in Table 5.

In [184, 258], among many other sources, an approximation for the rate of time of a clock at position r
moving with velocity v compared to the rate of time of a clock at the coordinate-system origin in the absence
of gravity (in this case, the time is TCG) is

dt
dtTCG

« 1 ´ 1
c2

ˆ
k9rk2

2
`Uprq

˙
, (C3)

where c is the speed of light. The bias of the moving clock in seconds compared to TCG after one TCG day
is

1 TCG Day Bias “
ˆ

dt
dtTCG

´ 1
˙

86400 (C4)

as there are 86,400 seconds in a Julian day.
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Since frequency is the inverse of a time interval, one can relate the frequency of a clock on a satellite, f ,
to the frequency that a TCG observer would see, fTCG, as

fTCG “ dt
dtTCG

f . (C5)

The bias of the frequency of a clock in a satellite to a TCG clock is thus

D f “ f ´ fTCG. (C6)

Given a frequency bias, a corresponding range-rate measurement bias can be obtained using a simple
approximation. First, it is assumed that the geometry is such that the true range rate of the target is zero as
the bias can depend on the true range rate of the target. A satellite in a circular orbit relative to TCG (which
is defined at the center of mass of the Earth) has a zero range-rate. Next, since the range-rate bias is expected
to be small, it is assumed that a slow-target approximation for the Doppler shift of the moving target would
suffice in the receiver. That is,

´ D f « vrr

c
ftrans, (C7)

where ftrans is the frequency of the transmitter, D f is the Doppler shift, and vrr is the range rate, which is
positive for a target moving away from the receiver. (This can be derived by multiplying the non-relativistic
range-rate shift equations derived in [55] by 1{c and simplifying.) Thus, solving for vrr, one obtains the
simple expression for the range rate in terms of the Doppler shift,

vrr “ ´D f c
f

, (C8)

where the TCG observer erroneously expects to see a frequency of f if the satellite is not moving. By
inserting (C6) and (C5), one obtains the range-rate bias due to ignoring the effects of relativity on the clock
in the transmitter and receiver.



Appendix D

CONVERTING TO AND FROM ELLIPSOIDAL HARMONIC COORDINATES

Ellipsoidal harmonic coordinates play a role in Section 4.2 in providing explicit expressions for the
gravitational potential and the acceleration due to gravity at any point given an ellipsoidal gravitational
approximation. This appendix summarizes the conversions between Cartesian and ellipsoidal harmonic
coordinates.

Ellipsoidal harmonic coordinates are defined with respect to an ellipsoid having a given linear eccentric-
ity E. Using (32) and (24), the linear eccentricity can be expressed in terms of the semi-major axis a and
flattening factor of the reference ellipsoid as

E “ a
a

2 f ´ f 2. (D1)

Given a point pb ,l ,uq in ellipsoidal harmonic coordinates, where b is the reduced latitude, l is the lon-
gitude, and u is the ellipsoidal harmonic semi-major axis, the corresponding point in Cartesian coordinates
is [136, Ch. 1.15]

x “
a

u2 ` E2 cospb qcospl q (D2)

y “
a

u2 ` E2 cospb qsinpl q (D3)
z “usinpb q. (D4)

The inverse transformation is more difficult and comes from inverting (D2) through (D4). Given a point
px,y,zq in Cartesian space, one can invert the equations to get

b “p

2
´ f (D5)

l “arctan2py,xq (D6)

«
u
f

�
“

$
’’’’’’’’&

’’’’’’’’%

»

–
up

arccos
ˆ

max
ˆ

min
ˆ

z
up

,1
˙

,´1
˙˙

fi

fl If t ° 0

»

—–

z
cospfq

arccospsignpzqqup

E

fi

�fl Otherwise

(D7)
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where

t “x2 ` y2 ` z2 ´ E2 (D8)

qp “1 `
d

1 ` 4
ˆ

Ez
t

˙2

(D9)

up “

$
’&

’%

dˆ |t|
2

˙
qp If qp is finite.

0 Otherwise.

(D10)

Note that if t ° 0, one must first solve for f before finding u in (D7). The max and min commands in (D7)
help to deal with numerical precision limitations. The test in (D10) is also meant to deal with numerical
precision problems when t is very small. The sign function returns 1 if the argument is positive, and ´1 if
the argument is positive, ´1 if the argument is negative, and 0 if the argument is zero. The angle f is the
complement of the reduced latitude.

Cartesian unit vectors u
b

, u
l

, and uu in the directions of the b , l , and u coordinates, respectively, at a
particular point are given by differentiating (D2) through (D4) by b , l , and u to get

c1u
b

“

»

——–

´
a

E2 ` u2 sinpb qcospl q
´

a
E2 ` u2 sinpb qsinpl q

ucospb q

fi

��fl (D11)

c2u
l

“

»

——–

´
a

E2 ` u2 cospb qsinpl q
a

E2 ` u2 cospb qcospl q
0

fi

��fl (D12)

c3uu “

»

—————–

ˆ
u?

E2 ` u2

˙
cospb qcospl q

ˆ
u?

E2 ` u2

˙
cospb qsinpl q

sinpb q

fi

�����fl
(D13)

where c1, c2, and c3 are scalar multipliers indicating that the arguments on the right-hand side do not nec-
essarily have unit magnitude. Thus, one must divide the vectors by their magnitudes to get the desired unit
vectors.

Note that if a point is too close to the poles, then it is possible that c2 is nearly zero. However, since u
l

is orthogonal to u
b

and uu, it is best to define u
l

in terms of the cross product

u
l

“ u
b

ˆ uu. (D14)



Appendix E

PRINCIPAL AXES, PRECESSION, NUTATION, AND THE POLE TIDE

The principal axis coordinate system plays a role in understanding the coordinate system usually used
for gravitational models as well as what the pole tide is. The inertia matrix and angular momentum vector in
the definition of the principal axis coordinate system also play roles in understanding what precession and
nutation with regard to the Earth’s orientation are, and how the two terms differ.

The angular momentum vector h of a rotating body at a particular instant is defined to be the volume
integral

h “
ª

rPVob j

rprqr ˆ vdxdydz (E1)

where rprq is the density of the object at point r, and v is the direction of motion of point r. The integral is
over the volume of the object; however, it could be extended to be over all of three-dimensional space, R3,
by letting rprq be zero outside of the object.

The angular momentum vector can be rewritten in terms of an inertia matrix (generally referred to as an
inertia temsor, even though it is only a 3 ˆ 3 matrix). This is simplest to do if the origin is chosen to be the
center of mass of the object. In such an instance, one can replace the velocity term with a cross product as

hG “
ª

rPVob j

rprqr ˆ pw ˆ rqdxdydz (E2)

where the subscript of G on h indicates that it is taken with respect to the center of mass of the object, and
w is an angular velocity vector (the axis of rotation, the magnitude of which is the rotation rate, usually in
radians per second) such that v “ w ˆ r at the point r. If the body that is rotating is rigid, then w will be the
same for all pointsE.1 and (E2) can be rewritten as

hG “

IGhkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkj˜ª

rPVob j

rprq
`
krk213,1 ´ rr1˘dxdydz

¸
w (E3)

where IG is the inertia matrix when the origin is chosen to be at the center of mass of the object and 13,1 is
a 3 ˆ 1 vector of ones.

In (E1), it can be seen that the value of the angular momentum vector h depends on the choice of the
origin and on the alignment of the axes. When the origin is chosen to not be the center of mass of the object,
h can still be written in terms of a general inertia matrix I as discussed in [322, Ch. 10.5] and [49, Ch.12.5.3].

E.1Note that the axis of rotation of a rigid body passes through the center of mass of the body.
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In such an instance, if rG is the location of the center of mass of the object with respect to the desired origin
of the object, the inertia matrix transforms to become

I “ IG ` M
`
krGk213,1 ´ rGr1

G
˘

(E4)

where M is the mass of the object. In such an instance, one can still write

h “ Iw (E5)

where w has not changed.

On the other hand, if the origin is kept at the center of mass of the object but the coordinate system is
rotated by a rotation matrix R, the angular momentum, the inertia matrix, and the axis of rotation all change
as

h “RhG (E6a)
I “RIGR1 (E6b)

w rotated “Rw (E6c)

such that h “ iw rotated instead of hG “ IGw . Rotations do not change the magnitude of h.

The principal axis coordinate system is one such that the origin is at the center of mass of the object and
the orientation of the axes is chosen such that the inertia matrix I is diagonal. Given IG and omega with
the axes rotated in an arbitrary manner, the task of finding the principal axes is the same as performing an
eigenvalue decomposition of IG. In Matlab, the rotation matrix and the inertia matrix in principal axis form
can be found using the command [R,I]=eig(IG) where IG corresponds to IG. The eigenvalues of IG
are known as the principal moments of inertia. The axes associated with the eigenvalues are known as the
principal axes. The axis corresponding to the largest eigenvalue is known as the figure axis. Gravitational
models are often derived in terms of the principal axes.

The principal axis coordinate system is important for understanding the origin of precession and nutation
of a planet. If the planet is assumed to be rigid, then the inertia matrix I in the principal axis coordinate
system is constant and, as derived in [322, Ch. 11.2] and [49, Ch. 12.6], the rotation axis with respect to the
principal axis coordinate system varies over time as per Euler’s equations of motion of a rigid body

9
w “ I´1

¨

˚̋

»

—–
w2w3pI2 ´ I3q
w3w1pI3 ´ I1q
w1w2pI1 ´ I2q

fi

�fl ` dh
dt

˛

‹‚ (E7)

where I j is the jth diagonal element of I, w “ rw1,w2,w3s1, and Bh
Bt is any externally applied torque to the

system. In the absence of externally applied forces, the angular momentum h remains constant.

If the massive body is symmetric about a particular axis and w coincides with the axis of mass symmetry,
then (E7) is trivial: 9

w “ 03,1. Note that changing any of the principal moments of inertia (changing Iq
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changes 9
w . While the Earth may be approximated as being rigid, it is not. The effects of pole tides arise

when external forces move the crust of the Earth with respect to the inner mantle/core or deform the Earth,
changing the direction of the figure axis. This means that I has changed, and thus the rotation axis of the
Earth has changed.

In the absence of external forces, precession arises when the axis of rotation of the massive object is
not aligned with the mass axis of symmetry. Consider, for example, the case where I1 “ I2 “ I (the body is
symmetric about the third axis). In such an instance, (E7) can be written

9
w “

«
´ kw2

kw1

�
(E8)

where k “ I3´I
I . As discussed in [49, Ch. 12.6], the solution to this differential equation has the form of

simple harmonic motion:

w1 “Acospkt ` f0q w2 “Asinpkt ` f0q (E9)

where A is the maximum amplitude of the offset and f0 is an initial phase. Thus, precession is a smooth,
periodic rotation of 9

w .

As discussed in [49, Ch. 12.8] and [322, Ch. 11.5], if the torque dh
dt in (E7) is nonzero, high-frequency

oscillations can be superimposed on the lower-frequency motion of 9
w that would arise with torque-free

precession. These high-frequency variations are known as nutation. Earth orientation models generally
include precession and nutation (due to forces from other massive bodies in the solar system) together as a
single model.
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Appendix F

EVALUATING SPHERICAL-HARMONIC POTENTIALS AND THEIR GRADIENTS

Spherical harmonics can be used to describe both real and complex scalar and vector potential fields,
as discussed for range-independent harmonics in [9, Ch. 12.6, 12.12] and in terms of gravitation in [187,
Appen. A]. When considering gravitational and magnetic models, a commonly used formulation of the
gravitational potential/scalar magnetic-field potential is

V pr,fc,l q “ c
r

Nÿ

n“0

´a
r

n̄ nÿ

m“0
Pm

n psinpfcqqpCn,mcospml q`Sn,msinpml qq (F1)

where r, fc, and l are respectively range, geocentric latitude, and longitude, Cn,m and Sn,m are real scalar
coefficients, the function Pm

n is the associated Legendre function of degree n and order m, and c and a are
constants, and N is the highest degree. In gravitational models, including the Earth Gravitation Model 2008
(EGM2008) from the National Geospatial Intelligence Agency (NGA), c “ GMJ and a “ aJ, the semi-
major axis of the Earth (see Table 5). In magnetic-field models, including the World Magnetic Model 2010
(WMM2010) and the Enhanced Magnetic Model 2010 (EMM2010), c “ a2

J and a “ aJ. On the other hand,
when synthesizing coefficients for a model that depends only on the latitude and longitude, but not the
distance from the center of the Earth, such as when using the coefficients for the Earth2012 terrain model,
the NGA’s Digital Terrain Model 2006.0 (DTM2006.0) orthometric height (and bathymetric depth) model,
and when synthesizing the Kp term in (57) from the NGA’s geoid model, one simply sets a “ c “ r “ 1,
because those terms are not needed in the spherical-harmonic sum. Note that when using the EGM2008
model, V is the gravitational potential and the gradient of V is acceleration due to gravity. However, when
using the WMM2010 and EMM2010 models, V is a scalar magnetic-field potential and the negative of the
gradient of V is the magnetic field.

Though (F1) is the generic form of a spherical-harmonic coefficient model, the vast majority of such
models use different definitions of the associated Legendre functions. The function Pm

n is the non-normalized
associated Legendre function of degree n and order m, defined in terms of derivatives of the Legendre
polynomial Pn as

Pm
n pxq , p´1qmp1 ´ x2q m

2
dm

dxm Pnpxq. (F2)

The Legendre polynomial is itself defined in terms of derivatives as [357]

Pnpxq , 1
n!2n

dn

dxn px2 ´ 1qn (F3a)

“ 1
2n

nÿ

k“0

ˆ
n
k

˙
px ´ 1qn´kpx ` kqk. (F3b)
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On the other hand, the EGM2008 model, the Earth2012 model, the DTM2006.0 model, and the model
used for the Kp term in (57) from the NGA’s geoid model do not directly use the coefficients and associated
Legendre functions as expressed in (F1). Rather, they use fully normalized, unitless spherical-harmonic co-
efficients with fully normalized associated Legendre functions.F.1 Additionally, the models use an alternate
notation/definition for the associated Legendre functions, specifically

Pn,mpxq , p1 ´ x2q m
2

dm

dxm Pnpxq (F4a)

“ p1 ´ x2q m
2

1
n!2n

dm`n

dxm`n px2 ´ 1qn (F4b)

This differs from (F2) by the omission of the p´1qm term, which is simply absorbed into the coefficients,
Cn,m and Sn,m. The fully normalized associated Legendre functions and coefficients used in the EGM2008
model are given by

P̄n,m “Nn,mPn,m (F5)

C̄n,m “Cn,m

Nn,m
(F6)

S̄n,m “ Sn,m

Nn,m
(F7)

where the normalization factor is

Nn,m “
d

pn ´ mq!p2n ` 1qp2 ´ d pmqq
pn ` mq!

(F8)

and is chosen such that the harmonics have a mean-squared value of one on the unit sphere. The normalized
coefficients C̄n,m and S̄n,m are called Stokes coefficients. Thus, the basic form of the EGM2008 model is

V pr,fc,l q “ c
r

Nÿ

n“0

´a
r

n̄ nÿ

m“0
P̄m

n psinpfcqq
`
C̄n,mcospml q`S̄n,msinpml q

˘
. (F9)

Note, however, that documentation for the EGM2008 model often uses geocentric colatitude (90˝ minus
the latitude) instead of latitude, which turns the argument of P̄n,m into a cosine. Also, the normalization
used here differs from the normalization that Matlab’s built-in legendre function uses. The following
subsections discuss how to evaluate (F9) and its gradient in Cartesian coordinates.

On the other hand, the EMM2010 and the WMM2010 magnetic-field models do not express the magnetic
potential in terms of fully normalized associated Legendre functions. Rather, the models use coefficients for
Schmidt-normalized Legendre functions. This appendix only considers the synthesis of fully normalized

F.1Documentation is available at http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/
README FIRST.pdf .
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spherical-harmonic coefficients as used in the EGM2008 model. The conversion from Schmidt-normalized
C̃n,m and S̃n,m spherical-harmonic coefficients to fully normalized coefficients is performed as

C̄n,m “ 1?
1 ` 2n

C̃n,m S̄n,m “ 1?
1 ` 2n

S̃n,m. (F10)

Data files for many gravitational models including the EGM2008 often omit the first few Stokes coeffi-
cients. This is because, as mentioned in [29, Ch. 3.4], by keeping the c “ GMJ term in (F9) out front (rather
than absorbing it in the coefficients) and including the equatorial radius in the expression, the coefficients
are kept unitless and C0,0 is always one. If the center of mass of the Earth is the origin, then C1,0, C1,1, and
S1,1 are all zero. The EGM2008 model takes advantage of these simplifications to rewrite (F9) as

V pr,fc,l q “ GMJ
r

˜
1 `

Nÿ

n“2

´aJ
r

n̄ nÿ

m“0
P̄n,mpsinpfcqq

`
C̄n,mcospml q`S̄n,msinpml q

˘
¸

(F11)

where, in practice, the outer sum is truncated to a finite number of terms. The method described in the fol-
lowing subsections does not take advantage of the simplification used for the first few terms of the EGM2008
model and thus when using such coefficients zeros should be inserted as appropriate.

Note that the coefficients in many spherical-harmonic magnetic field and gravitational models slowly
drift over time. The WMM and EMM2010 model coefficients come with additional terms to estimate the
Earth’s magnetic field within 5 years of the release of each model. The drift of the gravitational coefficients
is noted in [366], among other sources. However, the modeling and documentation surrounding the use and
incorporation of such terms is inconsistent.

The International Earth Rotation Systems Service (IERS) conventions lists expressions for the drift
of low-degree coefficients in spherical-harmonic geopotential models [257, Ch. 6.1] for the EGM2008
model.F.2 The value at the epoch year of J2000.0 (0:00 on 1 January 2000 UTC) for C̄3,0 and C̄4,0 matches
that in the coefficients for the EGM2008 model, implying that the model has an epoch date of J2000.0.
However, a different value of the zero-tide C̄2,0 coefficient is provided (´0.4841694810 ˆ 10´3) citing a
prepublication version of [45] as being more accurate than the value used in the EGM2008 model itself.
Section 6.2 of the IERS conventions [257] lists the tide-free value as ´0.48416531 ˆ 10´3. Note, however,
that the WGS 84 standard [69] does not use the IERS’ more accurate value for C̄2,0.

Numerical-precision problems make the evaluation of (F9) and its gradient challenging. The EGM2008
model contains complete coefficients up to degree and order 2159 and from degree 2160 to 2190, the non-
zero coefficients only go up to order 2159. In unnormalized form, the magnitude of Pn,mpxq would greatly
exceed the maximum floating-point value, which is slightly less than 21024 [149]. In normalized form, the
coefficients and associated Legendre polynomials can be computed avoiding overflow issues. However,
it has been shown that underflow problems arise for orders m ° 1900 [140], though algorithms have been
developed to avoid such problems. The techniques presented in this appendix allow one to use the EGM2008

F.2The drift rates shown are 9̄C2,0 “ 11.6 ˆ 10´12, 9̄C3,0 “ 4.9 ˆ 10´12 and 9̄C4,0 “ 4.7 ˆ 10´12 per year, where the time system
for “year” is not further defined, but one might assume a terrestrial time (TT) Julian year of exactly 365.25 days of exactly 86400
seconds.
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model without resorting to using quadruple-precision arithmetic or techniques to extend the exponent of
floating-point numbers, as mentioned in [100], except the formulae for computing second-order moments
for estimates from the EGM2008 model, which run into overflow and underflow problems close to the
geographic poles when using double-precision arithmetic.

In [41], and later improved and in more detail in [85], four techniques for derivatives of the gravitational
potential are considered.F.3 Two of the methods have singularities at the poles, and two have been designed
to have no problem evaluating gravitational gradients at or near the poles. A mission-critical system should
be numerically stable everywhere on Earth, so the possible failure of the algorithm near the poles is unac-
ceptable. Unfortunately, both analyses demonstrated that the singularity-free algorithms suffer a minor loss
of precision near the equator, suggesting that the best method for finding the acceleration due to the Earth’s
gravity would be a combination of singular and non-singular techniques.

Section F.1 describes an implementation of Pines’ singularity-free algorithm from [85, 207, 262, 308],
which can be used near the geographic poles (in the simulations in this report, it was used within 2˝ of
the poles). For points that are not near the poles, the modified forward row (MFR) algorithm of [140] is
chosen and is explained in Section F.2. The MFR algorithm was shown in [140] to outperform the types of
algorithms described in [41, 85] for points far from the poles.

In additional to spherical-harmonic gravitational coefficients, the EGM2008 model comes with stan-
dard deviations for all of the coefficients. Assuming the errors corrupting the gravitational coefficients are
independent, the standard deviations can be synthesized to obtain a variance for gravitational potential com-
putations and to obtain a covariance matrix for gravitational-acceleration computations. Section F.3 explains
how Pines’ method can be modified to synthesize the standard deviations.

Finally, Section F.4 describes the relationship between the J2 gravity model, which is a truncated spherical-
harmonic model, which often appears in tracking literature, such as in [202], and the “exact” ellipsoidal-
Earth model. It is demonstrated that the J2 model is actually a truncated spherical-harmonic expansion of
the ellipsoidal-gravity model. Thus, if the full EGM2008 model cannot be used, but the exact ellipsoidal
model is not too computationally intensive to use, then there is no point in using the J2 approximation.

F.1 Pines’ Singularity-Free Method

In [85, 207, 262, 308], Pines’ singularity-free method of spherical-harmonic synthesis is developed with
a special consideration for gravitational models. The method of Pines expresses the gravitational potential
at a Cartesian point px,y,zq in terms of a range r and the direction cosines s, t, and u, which are defined in
Eq. (42) in [85] as

s ,x{r “ cosfc cosl (F12)

t ,y{r “ cosfc sinl (F13)

u ,z{r “ sinfc, (F14)

F.3A number of methods for computing higher order derivatives are also considered in [41, 85]. Higher order derivatives are
necessary for computing the torque that a satellite experiences due to the gravitational gradient [110].
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where r, fc, and l are the spherical coordinates (range, elevation [spherical latitude], azimuth [longitude])
of the point px,y,zq. As in Eq. (44) of [85], the gravitational potential at px,y,zq is

V “c
r

Nÿ

n“0
rn

nÿ

m“0
Dnmps, tqH̄m

n puq, (F15)

rn ,
´a

r

¯n
(F16)

Dnmps, tq ,C̄nmrmps, tq ` S̄nmimps, tq, (F17)

where H̄m
n puq is a fully normalized Helmholtz polynomial of degree n and order m (the evaluation of which

is discussed below), C̄nm and S̄nm are fully normalized spherical-harmonic coefficients, GM is the universal
gravitational constant times the mass of the Earth, and the terms rmps, tq and imps, tq can be found recursively
using

rm “srm´1 ´ tim´1 (F18)
im “sim´1 ` trm´1 (F19)

starting with r0 “ 1 and i0 “ 0, as in Eq. (49) of [85]. The parameterizations on s and t have been omitted
for compactness of notation. Alternatively, the rm and im terms can be written non-recursively as

rm “cospml qcosmpfcq (F20)
im “sinpml qcosmpfcq. (F21)

The components of the gradient of the gravitational potential derived in [262] are

—V “

»

—–
Vx

Vy

Vz

fi

�fl “ c
r2

»

—–
a1 ` sa4,

a2 ` ta4

a3 ` ua4

fi

�fl (F22)

where

a1 “
Nÿ

n“0
rn

nÿ

m“1
m

`
C̄nmrm´1 ` S̄nmim´1

˘
H̄m

n puq (F23)

a2 “
Nÿ

n“0
rn

nÿ

m“1
m

`
´C̄nmim´1 ` S̄nmrm´1

˘
H̄m

n puq (F24)

a3 “
Nÿ

n“0
rn

nÿ

m“0

`
C̄nmrm ` S̄nmim

˘ dH̄m
n puq
du

(F25)

a4 “ ´
Nÿ

n“0
rn

nÿ

m“0

`
C̄nmrm ` S̄nmim

˘
L̄m

n (F26)
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where

L̄m
n , pn ` 1 ` mqH̄m

n puq ` u
dH̄m

n puq
du

. (F27)

The method of evaluating the Helmholtz polynomials needed to evaluate the potential in (F15) and the
gradient of the potential in (F22) is taken from [85]. The Helmholtz polynomial of degree n and order m is
defined to be

Hm
n puq , 1

n!2n
dn`m

dun`m

`
u2 ´ 1

˘n
. (F28)

Consequently,

Hm
n puq “ 0@m ° n. (F29)

A fully normalized Helmholtz polynomial is defined to be

H̄m
n puq , Hm

n puq

$
’’’’&

’’’’%

d
p2n ` 1qpn ´ mq!

pn ` mq!
if m “ 0

d
2p2n ` 1qpn ´ mq!

pn ` mq!
otherwise.

(F30)

The fully normalized Helmholtz polynomials can be computed recursively starting with

H̄0
0 puq “1 (F31)

H̄1
1 puq “

?
3 (F32)

H̄1
0 puq “u

?
3. (F33)

Then, all terms of the form H̄n
n puq and H̄n´1

n puq are computed recursively using

H̄n
n puq “

c
2n ` 1

2n
H̄n´1

n´1 puq (F34)

H̄n´1
n puq “u

?
2nH̄n

n puq. (F35)

Then, all of the other fully normalized Helmholtz polynomials are computed using

g “
d

p2n ` 1qp2n ´ 1q
pn ` mqpn ´ mq (F36)

h “
d

p2n ` 1qpn ´ m ´ 1qpn ` m ´ 1q
p2n ´ 3qpn ` mqpn ´ mq (F37)

H̄m
n puq “ugH̄m

n´1puq ´ hH̄m
n´2puq. (F38)
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First derivatives of fully normalized Helmholtz polynomials are computed from the Helmholtz polyno-
mials as

dH̄m
n puq
du

“

$
’’&

’’%

0 if m“0,n“0c
npn ` 1q

2
H̄1

n puq if m“0,n°0
a

pn ´ mqpn ` m ` 1qH̄m`1
n puq otherwise.

(F39)

The aforementioned equations for computing a spherical-harmonic potential and its gradient will tend
to suffer from overflow problems when used as written above with high degree and high order models, such
as the Earth Gravitation Model 2008 (EGM2008) model. A workaround for the problem is to scale all of
the fully normalized Helmholtz polynomials and their derivatives and then to unscale the result. This is
analogous to the scaling that is suggested in Section F.2 when using the MFR algorithm.

Let cS be the scale factor. In the simulations for this report, cS “ 10´280 was used. All of the fully
normalized Helmholtz polynomials’ derivatives can be computed in a scaled manner by replacing the seed
values in (F31), (F32), and (F33) with

H̄0
0,scaledpuq “cS (F40)

H̄1
1,scaledpuq “cS

?
3 (F41)

H̄1
0,scaledpuq “cSu

?
3. (F42)

After computation of the scaled potential Vscaled and gradient —Vscaled, the unscaled values can be obtained
as

V “Vscaled

cS
—V “—Vscaled

cS
. (F43)

F.2 The Modified Forward Row Algorithm

When considering the use of spherical-harmonic synthesis models away from the geographic poles, the
modified forward row algorithm of [140] seems to be one of the best methods to use. Defining

t ,cospqcq u ,sinpqcq (F44)
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the algorithm does not directly compute the fully normalized Legendre functions in (F9), but rather it com-
putes the ratio P̄n,mptq

um using the recursion

P̄n,mptq
um “

$
’’’’’’’’’’’’’’’&

’’’’’’’’’’’’’’’%

0 for n † m
1 for n “ m “ 0?

3 for n “ m “ 1c
2m ` 1

2m
P̄m´1,m´1ptq

um´1 for n “ m ‰ 1

gn,mt
ˆ

P̄n,m`1ptq
um`1

˙
´ hn,mu2

ˆ
P̄n,m`2ptq

um`2

˙
for n ° m, m ‰ 0

1?
2

ˆ
gn,mt

ˆ
P̄n,m`1ptq

um`1

˙
´ hn,mu2

ˆ
P̄n,m`2ptq

um`2

˙˙
for n ° m, m “ 0

(F45)

where

gn,m “ 2pm ` 1qa
pn ´ mqpn ` m ` 1q (F46)

hn,m “
d

pn ` m ` 2qpn ´ m ´ 1q
pn ´ mqpn ` m ` 1q . (F47)

The potential V is then computed using Horner’s method, as described in [140]. This involves computing
the terms

XCpmq “
Nÿ

m“0

Nÿ

n“m

´a
r

¯n
C̄n,m

P̄n,mptq
um (F48)

XSpmq “
Nÿ

m“0

Nÿ

n“m

´a
r

¯n
S̄n,m

P̄n,mptq
um (F49)

Wm “XCpmqcospml q ` XSpmqsinpml q (F50)

and then evaluating the nested expression

V “ c
r

ppp. . .ppWNu`WN´1qu`WN´2qu . . .qu`W1qu`W0q . (F51)

The gradient of the potential can be computed by taking the partial derivatives of (F51) in spherical
coordinates, and then transforming the derivatives to Cartesian coordinates. It is desirable to maintain a
form similar to (F51) for the derivatives. However, when computing the derivatives with respect to r, the c

r
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term must be taken into account. The derivative with respect to r can be computed using

Xdr
C pmq “

Nÿ

m“0

Nÿ

n“m
pn ` 1q

´a
r

¯n
C̄n,m

P̄n,mptq
um (F52)

Xdr
S pmq “

Nÿ

m“0

Nÿ

n“m
pn ` 1q

´a
r

¯n
S̄n,m

P̄n,mptq
um (F53)

Wdr
m “Xdr

C pmqcospml q ` Xdr
S pmqsinpml q (F54)

to get

dV
dr

“ ´ c
r2

`
pp. . .ppWdr

N u`Wdr
N´1qu`Wdr

N´2qu . . .qu`Wdr
1 qu`Wdr

0
˘
. (F55)

Eq.(31) of [140] demonstrates that the Horner form of (F51) can be retained when evaluating derivatives
of the potential with respect to spherical latitude, qc. Specifically, the results are written in terms of the ratio
of the derivative of P̄n,mptq with respect to um. The derivative ratio is computed using

enm “

$
&

%

c
pn ` m ` 1qpn ´ mq

2
if m “ 0

a
pn ` m ` 1qpn ´ mq otherwise

(F56)

d
dq

P̄n,mptq
um “m

t
u

P̄n,mptq
um ´ enmu

P̄n,m`1ptq
um`1 . (F57)

The derivative of the potential with respect to qc then uses

Xdq

C pmq “
Nÿ

m“0

Nÿ

n“m

´a
r

¯n
C̄n,m

d
dqc

P̄n,mptq
um (F58)

Xdq

S pmq “
Nÿ

m“0

Nÿ

n“m

´a
r

¯n
S̄n,m

d
dqc

P̄n,mptq
um (F59)

Wdq

m “Xdr
C pmqcospml q ` Xdr

S pmqsinpml q (F60)

to get

dV
dq

“ ´c
r

`
pp. . .ppWdq

N u`Wdq

N´1qu`Wdq

N´2qu . . .qu`Wdq

1 qu`Wdq

0
˘
. (F61)

On the other hand, the partial derivative with respect to longitude uses the original values of XC and XS
in (F48) and (F49), resulting in the following expression for the derivative of the potential

Wdl

m “ m
`
´Xdr

C pmqsinpml q ` Xdr
S pmqcospml q

˘
(F62)
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dV
dl

“ c
r

´
pp. . .ppWdl

N u`Wdl

N´1qu`Wdl

N´2qu . . .qu`Wdl

1 qu`Wdl

0

¯
. (F63)

Given the partial derivatives of the potential in spherical coordinates, the gradient of the potential may
be obtained by multiplying the stacked partial derivatives by the Jacobian of the spherical coordinate trans-
formation (this just applies the chain rule). Given the Jacobian

J “

»

——————–

x
r

y
r

z
r

´ y
x2 ` y2

x
x2 ` y2 0

´ xz
r2

a
x2 ` y2

´ yz
r2

a
x2 ` y2

a
x2 ` y2

r2

fi

������fl
(F64)

where the first column consists of derivatives of pr,l ,qcq with respect to x, the second column is derivatives
with respect to y and the third with respect to z (the Cartesian coordinates x, y, and z can be obtained using
(3), (4), and (5)), the gradient of the potential in Cartesian coordinates is

—V “ J1

»

—————–

dV
dr
dV
dl

dV
dqc

fi

�����fl
. (F65)

The singularity at the poles is evident in the x2 ` y2 terms in denominators in (F64).

In [140], it is noted that to avoid overflow problems when using double-precision arithmetic, the normal-
ized Legendre polynomial ratios should be scaled, and consequently, the final estimates must be unscaled
accordingly. A scale factor of cS “ 10´280 is suggested in [140] and is what was used in the simulations in
this report. The scaling is introduced by altering (F45) such that

P̄0,0ptq
u0 “ cS (F66)

P̄1,1ptq
u1 “ cS

?
3. (F67)

The scaling is removed from the potential using

V “ Vscaled

cS
(F68)
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and the scaling is removed from the gradient of the potential prior to the transformation using

»

—————–

dV
dr
dV
dl

dV
dqc

fi

�����fl
“ 1

cS

»

—————–

dVscaled

dr
dVscaled

dl

dVscaled

dqc

fi

�����fl
. (F69)

F.3 Synthesizing the EGM2008 Error Terms

The EGM2008 model comes with a set of standard-deviation terms sC̄n,m
and sS̄n,m

for each of its fully
normalized spherical-harmonic coefficients, C̄n,m and S̄n,m, respectively. Under the assumption that the error
terms are zero-mean and the errors between the terms are not correlated,F.4 the standard deviations can be
used to obtain the variance of a gravitational-potential estimate and a covariance matrix for the gravitational-
acceleration vector. There does not appear to be any method documented in the literature for using sC̄n,m

and sS̄n,m
to compute the variance of the gravitational potential or a covariance matrix for the gravitational-

acceleration vector. Thus, this appendix describes how that can be done based on Pines’ method of Section
F.1.

Consider a random vector a that is the weighted sum of N independent random variables vi plus constant
terms ci,

a “
Nÿ

i“1
Bi pvi ` ciq (F70)

where the Bi terms are deterministic matrices. Let the covariance matrix of vi be Rv
i . It can be shown that

the covariance matrix of a is

E
 

pa ´ Etauqpa ´ Etauq1( “
Nÿ

i“1
BiRv

i B1
i. (F71)

The principle behind (F71) shall be used to determine the variance and covariance matrix of the geoid
potential and gravitational-acceleration vector. In this instance, the Rv

i are the squares of the scalar standard-
deviation terms associated with the EGM2008 model, and the Bi matrices are the terms in the spherical-
harmonic sums that multiply the C̄n,m and S̄n,m terms.

To apply (F71) to the gravitational potential V expressed in (F15), one just has to substitute s

2
C̄n,m

and
s

2
S̄n,m

for C̄n,m and S̄n,m and square all of the terms that come out front. The result is

s

2
V ,E

!
pV ´ EtV uq2

)
(F72a)

“
´c

r

¯2 Nÿ

n“0
r

2
n

nÿ

m“0
s

2
C̄n,m

prmps, tqH̄m
n puqq2 `

´c
r

¯2 Nÿ

n“0
r

2
n

nÿ

m“0
s

2
S̄n,m

pimps, tqH̄m
n puqq2 . (F72b)

F.4In reality, the errors corrupting the spherical-harmonic coefficients are correlated. However, in lieu of additional information,
the non-correlation assumption is necessary.
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The expression for the covariance matrix of the gravitational-acceleration estimate is found in the same
manner from (F22) and is

R—V ,E
 

p—V ´Et—V uqp—V ´Et—V uq1( (F73a)

“c2

r4

»

—–
a11`2sa14`s2a44 a12`sa24`ta14`sta44 a13`sa34`ua14`sua44

a12`sa24`ta14 ` sta44 a22`2ta24`t2a44 a23`ta34`ua24`tua44

a13`sa34`ua14 ` sua44 a23`ta34 ` ua24`tua44 a33`2ua34`u2a44

fi

�fl (F73b)

The a terms in (F73b) originate from the expected values of the quadratic products of (F23), (F24),
(F25), and (F26) and are

a11 “
Nÿ

n“0
r

2
n

nÿ

m“1
m2

´
s

2
C̄n,m

r2
m´1 ` s

2
S̄n,m

i2m´1

¯
pH̄m

n puqq2 (F74)

a22 “
Nÿ

n“0
r

2
n

nÿ

m“1
m2

´
s

2
C̄n,m

i2m´1 ` s

2
S̄n,m

r2
m´1

¯
pH̄m

n puqq2 (F75)

a33 “
Nÿ

n“0
r

2
n

nÿ

m“0

´
s

2
C̄n,m

r2
m ` s

2
S̄n,m

i2m
¯ˆ

dH̄m
n puq
du

˙2

(F76)

a44 “
Nÿ

n“0
r

2
n

nÿ

m“0

´
s

2
C̄n,m

r2
m ` s

2
S̄n,m

i2m
¯

pL̄m
n q2 (F77)

a12 “
Nÿ

n“0
r

2
n

nÿ

m“1
m2

´
´s

2
C̄n,m

rm´1im´1 ` s

2
S̄n,m

im´1rm´1

¯
pH̄m

n puqq2 (F78)

a13 “
Nÿ

n“0
r

2
n

nÿ

m“1
m

´
s

2
C̄n,m

rm´1rm ` s

2
S̄n,m

im´1im
¯

H̄m
n puqdH̄m

n puq
du

(F79)

a14 “ ´
Nÿ

n“0
r

2
n

nÿ

m“1
m

´
s

2
C̄n,m

rm´1rm ` s

2
S̄n,m

im´1im
¯

H̄m
n puqL̄m

n (F80)

a23 “
Nÿ

n“0
r

2
n

nÿ

m“1
m

´
´s

2
C̄n,m

im´1rm ` s

2
S̄n,m

rm´1im
¯

H̄m
n puqdH̄m

n puq
du

(F81)

a24 “ ´
Nÿ

n“0
r

2
n

nÿ

m“1
m

´
´s

2
C̄n,m

im´1rm ` s

2
S̄n,m

rm´1im
¯

H̄m
n puqL̄m

n (F82)

a34 “ ´
Nÿ

n“0
r

2
n

nÿ

m“0

´
s

2
C̄n,m

r2
m ` s

2
S̄n,m

i2m
¯ dH̄m

n puq
du

L̄m
n . (F83)

Due to the squares of the terms, overflow and underflow problems when computing the variance s

2
V of

the gravitational potential and the covariance matrix R—V of the gravitational-acceleration are more serious
than when computing the potential or the gravitational-acceleration using the method of Section F.1. To
minimize overflow and underflow problems, the coefficients were scaled by cS “ 2´500. Note that when
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removing the scale factor, unlike in Section F.1, one must divide by c2
S rather than by cS, because all of the

terms involving cS are squared. Despite the scaling, when using double precision, overflow and underflow
errors occur near the poles. For that reason, the plots in Fig. 22 of Section 5.4 only go up to 85˝. Thus, when
a variance or covariance term is needed for a mission-critical application that must be valid worldwide, one
must either use quadruple-precision arithmetic or rewrite the sums in a manner that avoids overflows and
underflows.

F.4 The Ellipsoidal Approximation and the J2 Model

A large number of papers related to target tracking make use of the so-called J2 gravity model, which is
described in [144,202]. This appendix demonstrates that although the J2 model is often called an ellipsoidal
gravitational model, it is actually a truncated spherical-harmonic approximation to an ellipsoidal-gravity
model. Thus, for purposes of gravitationally establishing coordinate systems, unless it is mathematically
expedient to use the J2 model, one should just use the explicit solution given in Section 4.2 of this report
instead.

Combining various equations in [136, Ch. 2.7, 2.8, 2.9], a spherical-harmonic expansion of the gravity
potential under the ellipsoidal approximation using only the defining parameters of the World Geodetic
System 1984 (WGS 84) reference ellipsoid can be assembled yielding

Uprq “ GM
krk

˜
1 `

8ÿ

n“1
C2n,0

ˆ
a

krk

˙2n

P0
2npsinpfcqq

¸
(F84)

where

C2n,0 “p´1qn 3e2n

p2n`1qp2n`3q

ˆ
1´n` 5

3
n

ˆ
1´ 2

15

ˆ
me

q0

˙̇ ˙
(F85)

m ,w

2a3p1 ´ f q
GM

(F86)

q0 “1
2

ˆˆ
1 ` 3

e

2

˙
arctanpeq ´ 3

e

˙
. (F87)

In (F85), e is the first numerical eccentricity as defined in (24). Since the associated Legendre polynomials P
in (F84) rapidly decrease as n increases, the C2n,0 terms actually matter less as n increases despite increasing
in magnitude.

The so-called J2 approximation of the Earth’s potential is an approximation to the ellipsoidal approxima-
tion of the Earth. Since an associated Legendre function, as defined in (F2), is equivalent to just a Legendre
polynomial, one can use (F3b) to evaluate P0

2n. Using the fact that sinpfcq “ z
krk when using spherical

coordinates, one obtains the expression for the potential

Uprq « GM
krk

˜
1 `C2,0

ˆ
a

krk

˙2
˜

3
2

ˆ
z

krk

˙2

´ 1
2

¸¸
. (F88)
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Taking the gradient of the truncated potential in (F88), one obtains a convenient expression for acceleration
due to gravity as a function of position:

´ —Uprq «

Newton’s Law for a
Point or Spherehkkkkkkkikkkkkkkj

´ GM
krk2

ˆ
r

krk

˙
`

First-Order Oblateness Correctionhkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj

3GMa2C20

2krk5

»

———————–

rx

ˆ
1 ´ 5

r2
z

krk2

˙

ry

ˆ
1 ´ 5

r2
z

krk2

˙

rz

ˆ
3 ´ 5

r2
z

krk2

˙

fi

�������fl

. (F89)

This is the J2 approximation to the Earth’s gravitational acceleration used for low-precision ballistic tracking.



Appendix G

UMEYAMA’S ALGORITHM FOR GENERAL TRANSFORMATION ESTIMATION

The following algorithm from [331] can be used to estimate the rotation matrix R, the translation vector
t, and the scaling parameter c that minimize the cost function (97) for transformations of the form z “ cRz̃`t
given noisy sets of z and z̃i measurements. Such general transformations are known in the field of geodesy
as “Helmert transformations” [296]. The steps of the algorithm are:

1. Given Z, and Z̃, which are m ˆ N matrices of the N m-dimensional column-vectors zi and z̃i, respec-
tively, in the two coordinate systems, stacked next to each other.

2. Compute the following mean quantities from Eqs. (34) and (35) of [331]:

µ

z̃ “ 1
N

Nÿ

i“1
z̃i µ

z “ 1
N

Nÿ

i“1
zi (G1)

3. Form the matrices Dz̃ and Dz where the ith column of each is

Dz̃
:,i “z̃i ´ µ

z̃ Dz
:,i “zi ´ µ

z (G2)

which can be implemented using diffTZ=bsxfun(@minus,ZT,muZT); and
diffZ=bsxfun(@minus,Z,muZ); in Matlab.

4. Compute the product matrix from Eq. (38) of [331]:

Sz,z̃ “ 1
N

Dz `
Dz̃˘1 (G3)

and set r to the rank of Sz,z̃ (r=rank(Sigma); in Matlab).

5. Perform a singular value decomposition on Sz,z̃ to obtain unitary matrices U and V and diagonal
matrix D such that Sz,z̃ “ UDV1 where S is a diagonal matrix. In Matlab, this can be done using the
command [U,D,V]=svd(Sigma); .

6. Create the matrix S “ Im,m, where Im,m is an m ˆ m identity matrix.

7. If r “ m ´ 1 and the product of the determinants of U and V is less than zero (use the compari-
son det(U)*det(V)<0 in Matlab), or if r ° m ´ 1 and the determinant of A is less than zero
(det(A)<0 in Matlab), then set Sm,m “ ´1 (the element in the last row and column of S should be
set to ´1). This implements Eqs. (43) and (39) in [331].
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8. The rotation matrix is given by

R “ USV1; (G4)

This implements Eq. (40) in [331].

9. If a scaling parameter is desired as a return value, then set

c “ 1
s

2
z,z̃

TrpDSq (G5)

which implements Eq. 42 of [331], and where Tr is the matrix-trace operation (sum of the diagonal
elements) and s

2
z,z̃ is given by

s

2
z̃ “ 1

N

Nÿ

i“1
kz̃i ´ µ

z̃k2 (G6)

which implements Eq. (36) of [331] and which can be implemented using
sigmaTZ2=(1/N)*sum(sum(diffTZ.*diffTZ)); in Matlab.

If a scaling parameter is not desired, then just set c “ 1.

10. The translation vector is given by

t “ µ

z ´ cRµ

z̃. (G7)

This implements Eq. (41) of [331].



Appendix H

A DERIVATION OF THE SCORE FUNCTION FOR STAR-TO-CATALOG
ASSIGNMENT

This appendix derives the marginal cost increment for assigning a celestial measurement to a star (or
planetary body) in a catalog. The derivation is similar to those in [22, Ch. 6.3,7.5] and [21] for target
tracking, except care is taken to allow the false alarms to have a nonuniform distribution.

Define q as a particular hypothesis of celestial observations to catalogued stars at a particular time,
Z “ tz1,z2, . . . ,zMu is the set of all observations at the given time, m is the cardinality of Z, and Ip is all prior
hypotheses and information that might aid the association. One can write

Prtq , Ip|Zu “Prtq , Ip|Z,mu (H1a)

“ 1
c1

ppZ|m,q , IpqPrtq , Ip|mu (H1b)

“ 1
c1

ppZ|m,q , IpqPrtq |m, IpuPrtIp|mu (H1c)

“ 1
c1

ppZ|m,q , IpqPrtq |m, IpuPrtIpu (H1d)

where in (H1a), the extra conditioning on m added no new information, since it is already in Z; the transition
to (H1b) used Bayes’ theorem, where c1 is a normalization constant; the transition to (H1c) comes from
the Kolmogorov definition of conditional probability; and the transition to (H1d) is from assuming that the
prior information is independent of the number of observations in the current set. Such an assumption is
reasonable if the prior information is, for example, the information in the star catalog.

Let the function fpqq provide the number of false measurements in the catalog-to-star association hy-
pothesis q . The prior information in Ip is assumed to provide information on T stars. The function xtpqq
returns the observation that is associated with the tth catalogued star in the catalog under the hypothesis
q ; if the star is hypothesized as not being seen, then xtpqq returns the empty set m. The function x̄ pqq
returns all observations that are from false alarms and x̄ipqq returns the ith false alarm in the assignment.
The probability density function (PDF) that is the first term of (H1d) can thus be written

ppZ|m,q , Ipq “ pc
`
x̄ pqq|m,q , Ip

˘ Tπ

i“1
pt pxtpqq|m,q , Ipq (H2)

using the law of total probability, where it is assumed that all observations are conditionally independent.
This means, for example, that there are no unresolved closely spaced stars, as might occur with double stars.
The PDF pc is the PDF of the clutter measurements and pt the PDF of the tth target. pt can be written as

pt pxtpqq|m,q , Ipq “
"

1 if xtpqq “ m
p̃t pxtpqq|m,q , Ipq otherwise

(H3)
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where p̃t pxtpqq|m,q , Ipq is the PDF of the assigned measurement given the catalog entry. Under the as-
sumption that the false alarms are independent of each other, one can also write

pc
`
x̄ pqq|m,q , Ip

˘
“

fpqqπ

i“1
pc

`
x̄ipqq|m,q , Ip

˘
. (H4)

Define d pqq as a set of Boolean detection indicators for the association hypothesis q such that dtpqq “ 1
if star t was observed, then the second term of (H1d) can be written

Prtq |m, Ipu “ Prtq |m, Ip,d pqq,fpqquPrtd pqq,fpqq|m, Ipu (H5)

using the law of total probability. The first term of H5 is the probability of a particular association of mea-
surements to targets given that one knows which stars have been observed and how many measurements
are present. However, since the actual measurements are not available, one can only assume that all pos-
sible observation-to-star assignment hypotheses are equally likely (the prior information Ip should not be
informative), and thus the first term can be found by counting

Prtq |m, Ip,d pqq,fpqqu “

¨

˚̊
˚̊
˝

Choose measurements
originating from targetshkkkkkkikkkkkkjˆ

m
m ´ f pqq

˙
Assign chosen measurements

to targetshkkkkkikkkkkj
pm ´ f pqqq!

˛

‹‹‹‹‚

´1

(H6a)

“fpqq!
m!

(H6b)

where it is assumed that m ´ fpqq • 0, i.e., that the hypothesis in question is valid.

Suppressing the argument pqq in d (Boolean indicators for star detection) and f (number of non-star
detections) for brevity, the second term of (H5) can be decomposed as

Prtd ,f |m, Ipu “ Prtd |m,f , IpuPrtf |m, Ipu (H7a)

“
ˆ

Prtd

ìpm ´ fq targets seen|f , Ipu
Prtpmpkq ´ fq targets seen|f , Ipu

˙ˆ
Prtm|f , IpuPrtfu

Prtmu

˙
(H7b)

“
˜ ±T

t“1 pPt
Dqdt p1 ´ Pt

Dq1´dt

Prtpmpkq ´ fq targets seen|f , Ipu

¸ˆ
Prtpmpkq ´ fq targets seen|f , IpuPrtfu

Prtmu

˙
(H7c)

“ Prtfu
Prtmu

Tπ

t“1

`
Pt

D
˘

dt p1 ´ Pt
Dq1´dt (H7d)

where (H7a) comes from Kolmogorov’s definition of conditional probability; (H7b) uses Bayes’ rule for the
term on the right and Kolmogorov’s definition of conditional probability for the term on the left; in (H7c),
the prior information Ip is assumed to provide information on the prior probability of detection of each of
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the stars (assumed independent), where Pt
D is the detection probability of star t for the term on the left, and

for the term on the right the substitution is equivalent. Finally, in (H7d), division was performed.

Combining (H7d) with (H6b), one obtains

Prtq |m, Ipu “ f !
m!

Prtfu
Prtmu

Tπ

t“1

`
Pt

D
˘

dt p1 ´ Pt
Dq1´dt . (H8)

Substituting (H8), (H2), and (H4) into (H1d), one obtains

Prtq , Ip|Zu “ f !Prtfu
c2

fπ

i“1
pc

`
x̄i|m,q , Ip

˘ Tπ

t“1

`
Pt

D pt pxt |m,q , Ipq
˘

dt p1 ´ Pt
Dq1´dt PrtIpu (H9)

where the 1{pm!Prtmuq term was absorbed into the normalizing constant to get a new normalizing constant
c2. The term pt pxt |m,q , Ipq was put into the exponent with Pt

D, because from (H3), it can be seen that such a
move does not change the result. Eq.(H9) can be rewritten such that the product of the clutter PDFs is over
all measurements, dividing out the clutter PDFs for measurements that are assigned to targets. This can be
written

Prtq , Ip|Zu “f !Prtfu
c3

PrtIpu
Tπ

t“1

ˆ
Pt

D
pt pxt |m,q , Ipq
pc pxt |m,q , Ipq

˙
dt

p1 ´ Pt
Dq1´dt (H10)

where the product over all measurements was absorbed into the normalizing constant.

An important step in formulating the problem of finding the optimal q is getting rid of the f !Prtfu term
in (H10). These terms can be eliminated by assuming a constant false-alarm rate in the area of interest.
If detection is performed using a constant false alarm rate (CFAR) algorithm such as those considered
in [104], under the assumption that false alarms are independent of the star locations,H.1 each false alarm in
a particular cell can be considered to be a Bernoulli random variable with some probability of false alarm of
PFA. Considering N bins with the same false-alarm probability PFA, the probability of seeing n false alarms
(over a particular fixed grid of points) is given by the binomial distribution

Prtnu “
ˆ

N
n

˙
Pn

FAp1 ´ PFAqN´n (H11)

with mean

l̃ , NPFA. (H12)

To simplify the mathematics of target tracking, and in this case to simplify the cost function of the star-to-
catalog association, the binomial distribution is generally replaced with a Poisson approximation as done

H.1Target state dependent false alarms can be considered part of the target measurement model itself. Such issues arise, for
example, when tracking targets with wakes, such as boats or objects reentering the atmosphere. However, such issues are unlikely
to arise when observing stars. More on using wake measurements in single-scan tracking algorithms is given in [37, 278].
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in [22, Ch. 2.5]. Suppose that the volume under consideration is held constant while the number of bins N
is increased by decreasing the size of each of the bins and at the same time the probability of false alarm
decreases such that the mean number of false alarms l̃ remains constant (though the maximum possible
number of false alarms changes since N changes). As derived in [64, Ch. 5.4], the limit of such a binomial
distribution as N Ñ 8 and PFA Ñ 0 is the Poisson distribution

Prtfu “ e´l̃

l̃

f

f !
. (H13)

The constant l̃ is the mean number of false alarms over the region under consideration. If the size of the
region under consideration changes, then l̃ changes. Thus, it makes sense to factor l̃ into a constant times
the volume of the detection region, l̃ “ lcV . The units of lc are the inverse units of the volume in which
detections are taken. For example, if detections are taken on a grid of azimuth and elevation points but the
measurements also provide additional information, such as the intensity of wavelength of the star, then lc
will be in units of inverse azimuth-elevation (inverse radians-squared) and V will have units of azimuth-
elevation. Substituting (H13) into (H10), one obtains

Prtq , Ip|Zu “ 1
c4

PrtIpu
Tπ

t“1

ˆ
Pt

D
pt pxt |m,q , Ipq

plcV qpc pxt |m,q , Ipq
ḋt

p1 ´ Pt
Dq1´dt (H14)

where the constant term e´l̃ was absorbed into the normalizing constant, the l̃

f term was expressed as
l̃

m{l̃

m´f , and the l̃

m term was absorbed into the normalizing constant as well. Additionally, lcV has been
substituted for l̃ .

The 2D-assignment problem seeks to determine the assignment q with the highest probability for a given
hypothesis of prior information Ip. This can be done by maximizing the logarithm of (H14) and discarding
constant terms. Let L be the cost function. Taking the natural logarithm of (H10) and discarding constant
terms, one has

L “
Tÿ

t“1

ˆ
dt ln

ˆ
Pt

D
pt pxt |m,q , Ipq

plcV qpc pxt |m,q , Ipq

˙
` p1 ´ dtq lnp1 ´ Pt

Dq
˙

. (H15)

Thus, assuming that the PDF of measurement i assigned to catalogued entry t is independent of the assign-
ments of the other measurements and the number of measurements, the marginal added contribution to the
cost function from assigning target t to measurement i, DLi, j, where measurement index 0 is reserved for a
missed detection, is

DLt,i “

$
&

%
ln

ˆ
Pt

D
pt pzi|Ipq

plcV qpc pzi|Ipq

˙
if i ‰ 0

lnp1 ´ Pt
Dq if i “ 0

(H16)

where zi is the ith measurement and the conditioning on q , because the assignment of other measurements
does not change the PDF. Thus, the problem of finding the optimal q becomes the 2D-assignment problem
discussed in Section 8.3, where one strives to maximize the sum of the DL terms.
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However, (H16) is not the cost function used in Section 8.3. Rather, a further simplification is performed
to eliminate the direct dependence on the viewing region size V . If a CFAR algorithm is used for detection,
then a reasonable additional level of simplification to (H16) comes from assuming that the components of
the false-alarm measurements within the measurement domain are uniformly distributed. To make use of
this information, the clutter measurement x̄i can be split into two halves: the first half x̄

d
i consists of the

components used for detection; the second half x̄

f
i consists of additional components of the measurement.

Thus, one can write

pc
`
x̄i|Ip

˘
“ 1

V
p f

c

´
x̄

f
i

ˇ̌
ˇ Ip

¯
(H17)

where p f
c is the PDF of the components of the measurement that do not play a role in detection. Incorporating

the changes into (H14) and then taking the logarithm, discarding constant terms, and extracting the marginal
change due to an assignment to a target, (H16) becomes

DLt,i “

$
’’&

’’%

ln

¨

˝Pt
D

pt pzi|Ipq
lc p f

c

´
z f

i |Ip

¯

˛

‚ if i ‰ 0

lnp1 ´ Pt
Dq if i “ 0

(H18)

where z f
i is just the components of the measurement that do not play a role in detection. Due to the presence

of the p f
c term, if the false-alarm components are uniformly distributed over a particular parameter space, the

volume of that parameter space will appear in (H18). On the other hand, the p f
c term disappears if detection

is performed over the entire parameter space, thus explaining the cost function used in (116) in Section 8.3.
Note that if the clutter distribution in the viewing region is truly non-uniform, but one wanted to use (H18),
because of its lack of a V term, an ad hoc solution is to make l nonuniform and use the values of l at the
measurement locations.
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Appendix I

GETTING A DIRECTION VECTOR FROM THE SPICE TOOLKIT

The National Aeronautics and Space Administration’s (NASA’s) Spacecraft Planet Instrument C-matrix
Events (SPICE) toolkit can read the DE430 ephemerides. However, it does not provide direction vectors
for the locations of the planets and moons with respect to an observer on the surface of the Earth, though it
does provide direction vectors with respect to the center of the Earth. Additionally, though it can provide a
correction for aberration (an angular measurement bias arising due to special relativity), it uses a Newtonian
approximation rather than the special relativistic formula. This appendix describes how to obtain a direction
vector for an observer at a location offset from the center of the Earth using the SPICE toolkit and the aber-
ration correction function from the International Astronomical Union’s (IAU’s) Standards of Fundamental
Astronomy (SOFA) library, which includes an approximate general relativistic correction for the mass of
the Sun.

The SPICE toolkit reads ephemerides at a time in barycentric dynamical time (TDB). In practice, how-
ever, an observer’s clock will be in terms of terrestrial time (TT) or something similar. The strict conversion
from TT to TDB is actually based on the ephemerides themselves. However, the routine for converting from
universal coordinated time (UTC) or TT in the SPICE toolkit uses an approximation, as it does not require
that an ephemeris kernel be loaded. Thus, for most purposes, the approximate conversion routines in the
IAU’s SOFA library should be just as accurate. The relevant routines for the conversion are iauDtdb and
iauTttdb. Given the time of the observer, one must consider that (ignoring refraction and aberration) the
apparent location of the object is not its current location, but depends on when light left the object (light-
time). Strictly speaking, general relativistic raytracing (including atmospheric refraction) must be performed
to obtain the correct light-time correction. Raytracing including general relativity and isotropic refraction is
considered in [255], but is not used in this report. Rather, the light-time correction here is similar to those
described in the references in Table 1.

In Matlab, the code for obtaining the “apparent” location of a celestial body in meters, in this case the
Moon, with respect to the center of the Earth, including a light-time correction is

LTEst=0;%The estimated light-time delay. Assume that it will converge in three
%iterations.

for curIter=1:3
state = cspice_spkezr(’MOON’,...

TDBSec-LTEst,...
’J2000’, ...
’NONE’, ...
’EARTH’);

%Convert the position components to meters and find the position with respect to the
%observer.

GCRSPos=state(1:3)*1e3-obsPosGeoGCRS;
%Update the light-time estimate with the new position.

LTEst=norm(GCRSPos)/c;
end
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where c is the speed of light, TDBSec is the time in TDB given in seconds past J2000.0 (which has a
Julian date of precisely 2451545.0 TDB), and obsPosGeoGCRS is a 3 ˆ 1 position vector of the location
of the observer with respect to the center of the Earth in the ICRS. Note that the SPICE toolkit calls axes
that are aligned with the International Celestial References System (ICRS) (i.e., the Barycentric Celestial
Reference System [BCRS] and the Geocentric Celestial Reference System [GCRS]) the J2000.0 dynamical
coordinate system when using DE4xx ephemerides as documented in various data files, such as http:
//naif.jpl.nasa.gov/pub/naif/generic kernels/fk/satellites/moon 080317.tf .
However, the SPICE toolkit sometimes refers to the actual J2000.0 dynamical coordinate system, which, as
seen in Fig. 6, is rotated from the GCRS. The vector GCRSPos is the location of the Moon with respect to
the center of the Earth aligned with the ICRS/GCRS celestial coordinate axes. The inconsistency in notation
used in the library can be very confusing.

Next, a special relativistic aberration correction must be performed. The cause and significance of aber-
ration are described in Appendix J. An aberration correction can be performed using the iauAb function
from the IAU’s SOFA library, which also includes an approximate correction for general relativistic effects
due to the mass of the Sun based on the method described in [184]. As documented in the source code of
the iauAb function, general relativity contributes up to 0.4 microarcseconds of bending to the ray. The
function requires the distance from the Sun to the observer, the velocity of the object being observed, and
the velocity vector of the observer. The distance from the Sun to the observer can be obtained using the
cspice spkezr function and adding in the offset of the observer from the center of the Earth. The veloc-
ity vector of the object being observed and of the Earth can also be obtained using the cspice spkezr
function. However, the velocity vector of the observer in BCRS coordinates vBCRS

obs requires the addition of
the observer’s velocity with respect to the center of the Earth vEarth

obs with the velocity of the Earth vBCRS
Earth

itself. Ignoring special relativity theory, this addition can be done by just adding the vectors as

vBCRS
obs “ vEarth

obs ` vBCRS
Earth . (I1)

However, if one desires the highest theoretical precision, then the addition must occur accounting for special
relativity theory. The formula for adding velocities under special relativity theory is derived in vector form
in [206, Ch. 1.4]. If v is the velocity of a reference frame with respect to the global, inertial reference frame,
and u is the velocity of an object in that reference frame, then the velocity of the object in the global frame
uglobal is

uglobal “
v ` u `

ˆb
1 ´ kvk2

c2 ´ 1
˙´

u ´
´

u¨v
kvk2

¯
v
¯

1 ` v¨u
c2

. (I2)

In this case, v is vBCRS
Earth and u is vEarth

obs .

After accounting for special relativistic aberration, atmospheric refraction must be taken into account. If
one desires the highest precision (without resorting to full general relativistic ray tracing), then Fresnel drag
should probably also be taken into account. Armand Hippolyte Louis Fizeau observed that the velocity of
light passing through a moving container of water is affected by the velocity of the container (the light is
dragged along) [94]. The same is true with light passing through the atmosphere, since the Earth is rotating.
An explanation of the effect is given in [195]. The effect is named after Fresnel to reflect the fact that Fresnel
came up with a low-accuracy approximation based on an outdated theory of substances partially dragging
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a hypothesized luminiferous æther along with them in [99]. In the present report, Fresnel drag is ignored.
The errors introduced by ignoring Fresnel drag are probably significantly smaller than the errors introduced
by using a low-fidelity atmospheric refraction model. For the plots of planets in this report, the low-fidelity
numerical ray-tracing algorithm of [138] is used in Fig. 14 and the refraction correction in the IAU’s SOFA
library (used indirectly through their functions and copied directly out of the source code of iauAtioq )
the rest of the time.
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Appendix J

QUANTIFYING ERRORS DUE TO ABERRATION

Bradley’s aberration, which is more commonly known as stellar aberration and which could be termed
special relativistic aberration, occurs when relating terrestrial coordinate systems to celestial coordinate
systems. It has nothing to do with aberrations that occur in lens design, which are mentioned in [179, Ch.
3]. Bradley’s aberration of stars was first described by James Bradley in the 1700s [35]. Bradley’s aberration
can be explained using the special relativistic velocity addition formula in (I2). Bradley’s aberration arises
from the fact that the Earth orbits the Sun and the directions of stars are recorded in a heliocentric coordinate
system, in modern days, in the Barycentric Celestial Reference System (BCRS). At different times of the
year, the Earth moves at a different velocity with respect to the axes of the global celestial coordinate system.

If an observer is moving at a velocity v with respect to a global coordinate system, and measures an
object moving at velocity vp, then the velocity of the object in the global inertial coordinate system vi is
given by manipulating (I2) to get

vi “
vp ` pgpkvkq ´ 1q

´
vvT

kvk2

¯
vp ` gpkvkqv

gpkvkq
´

1 ` vT vp
c2

¯ . (J1)

If the moving observer emitted light in direction of the unit vector up, then one would use vp “ cup and
vi “ cui for the velocities in (J1) and find the stationary observer perceiving the emitted light focusing in
the direction of motion of the moving observer (the headlight effect). However, for measured directions,
for light emanating in direction up, the light arrives with velocity vp “ ´cup. Similarly, in the inertial
coordinate system, the equivalent to up is ui, so vi “ ´cui. Thus, using (J1), the directions measured in the
moving coordinate system map to directions in the stationary coordinate system as illustrated in Fig. J1.
The stationary observer would perceive the moving observer’s measurements as bunched up behind him.
The faster the moving observer goes, the more it seems to him that everything bunches up in front of him.

Basic corrections for Bradley’s aberration based on (J1) are used in the U.S. Navy’s astronomical al-
manac [70, Ch. B]. Note that stellar aberration is only noticeable due to changes in velocity of the Earth-
bound observer with respect to a global inertial coordinate system (otherwise the angular bias is constant)
and has nothing to do with the motion of the stars itself (beyond how they might be used to define the
coordinate system) [78].

Correcting for Bradley’s aberration is important for high-precision tracking of objects in space. The
maximum angular bias due to Bradley’s aberration of a satellite orbiting in a circular orbit at a particular
altitude (the speed of the satellite with respect to the Earth-centered inertial [ECI] coordinate system as a
function of altitude is given in (C2) in Appendix C), ignoring refraction and other gravitational effects, when
the global coordinate system is an ECI system, such as the Geocentric Celestial Reference System (GCRS),
is shown in Fig. J2. The maximum bias in angular measurements occurs when the motion of the satellite
in the ECI coordinate system, v, is orthogonal to vp “ cup, where up is the directional of the thing being
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(a) Stationary Observer (b) Directions of a Fast Moving Observer Converted into the
Stationary Coordinate System

Fig. J1: In (a), 12˝ angular slices are marked with alternating colors. An inertial observer stationary with respect to a global
coordinate system would interpret angles uniformly in all directions, as illustrated. In (b), the stationary observer would find that
angles measured by a moving observer traveling at 0.9c in the direction of the arrow (as seen by the stationary observer) are biased.
The moving observer’s measured directions seen in the stationary observer’s coordinate system bunch up behind the observer,
meaning that the moving observer accelerating to a constant velocity would see light bunch up in front of him.

observed in the satellite’s relativistically warped coordinate system. Thus Bradley’s aberration can induce
significant angular biases when performing detection from a satellite.
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Fig. J2: The maximum angular bias due to special relativistic aberration of measurements in a satellite’s local coordinate system
with respect to an ECI coordinate system (such as the GCRS) as a function of the altitude of the satellite (beyond the equato-
rial radius of the Earth) ignoring atmospheric refraction and general relativistic effects. The speed of the satellite, which is the
determining factor for the maximum bias magnitude, is determined assuming the satellite is in an ideal circular orbit.
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Appendix K

WHY THE FISHER DISTRIBUTION IS BAD FOR HIGH-PRECISION
MEASUREMENTS

In Section 8.3, the Fisher distribution is not chosen to represent the uncertainty in direction measure-
ments of stars. This appendix demonstrates the source of numerical precision problems that can arise when
using the Fisher distribution as well as many similar distributions of the unit sphere.

If the direction measurement is given in terms of azimuth and elevation, then

upziq “

»

—–
cospl

iqcospq

i
cq

sinpl

iqcospq

i
cq

sinpq

i
cq

fi

�fl . (K1)

To choose a reasonable value of k in the Fisher distribution (Eq. (117)) in Section 8.3.1, it can be seen
that just considering the cut of q

i
c “ 0 and q

t
c “ 0, the Fisher distribution in (117) has the same form as

the von Mises probability density function (PDF), which is presented in [211, Ch. 3.5.4], in l with a von
Mises concentration parameter of kvm “ k and a different normalization constant. Thus, marginalizing on
knowing the elevation is zero, the Fisher PDF reduces to the von Mises PDF. The mean resultant length of
the von Mises PDF is [211, Ch. 3.5.4]

rvm “ I1pkvmq
I0pkvmq (K2)

where Ikpxq is a modified Bessel function of the first kind. Methods for computing the ratio in (K2) in a
numerically stable manner are given in [108].K.1 The von Mises PDF is a good approximation to a normal
distribution wrapped to the unit circle when both have the same mean resultant length. The mean resultant
length of the wrapped normal distribution is [211, Ch. 3.5.7]

rnormal “ e´ s

2
normal

2 (K3)

where snormal is the standard deviation of the normal distribution prior to wrapping, in radians. Thus, for
precise measurements, if it seems that if (ignoring wrapping problems) the mean-squared error of a detection
appears to be about s

2
normal radians, then one can approximate the value of k in the Fisher distribution as the

numeric solution to

e´ s

2
normal

2 « I1 pkq
I0 pkq . (K4)

K.1Special techniques are needed to compute the ratio due to the size of the arguments. For example, for k “ 3283, I1pkq «
5.81 ˆ 101423, which is too large to fit in a standard double-precision floating-point register [149]. Much larger values of k are
needed for measurement errors less than 1˝.
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Here, (K4) is solved using the FindRoot command on the difference of both sides of (K4) in Mathematica
to get a reasonable value of k . For s “ 0.2˝ (3.49mrad), k “ 82070.7. For s “ 0.02˝ (0.349mrad), k “
8.20702 ˆ 106. Thus, the value of k increases rapidly. This can lead to numerical stability problems when
simulating the distribution and when performing likelihood maximization. For a precision of 20 µrad, as
considered in Section 8.3, k cannot be numerically solved in Mathematica using machine-precision routines.



Appendix L

DRAWING THE OUTLINE OF A CELESTIAL OBJECT

To draw the outline of the image of a planet or other celestial object in an observer’s field of view, one
must find the coordinates of the outer points of the object. The outer points that the observer sees are those
that are in planes orthogonal to the line of sight of the observer to the object. Using a spherical object model,
all of the outer points are located in a single plane that passes through the sphere and the points are a fixed
radius r from the center of the sphere. This appendix tells how to find the points.

Let uo be a unit vector from the observer to the object. One can find a rotation matrix R that rotates the
observer’s local coordinate axes such that the z-axis points in the direction of uo. There is no unique solution
to the rotation, so the shortest-distance rotation from Appendix C of [52] is used. The rotation matrix is

R“
»

–
q2

0 ` q2
1 ´ q2

2 ´ q2
3 2pq1q2 ` q0q3q 2pq1q3 ´ q0q2q

2pq1q2 ´ q0q3q q2
0 ´ q2

1 ` q2
2 ´ q2

3 2pq2q3 ` q0q1q
2pq1q3 ` q0q2q 2pq2q3 ´ q0q1q q2

0 ´ q2
1 ´ q2

2 ` q2
3

fi

fl. (L1)

where q “ rq0,q1,q2,q3s1 is given by

q “
»

–
a

1 ´ s2,´s
µyb

µ

2
x ` µ

2
y

,s
µxb

µ

2
x ` µ

2
y

,0

fi

fl
1

(L2)

where µ “ rµx,µy,µzs1 and

s “ ´
c

1
2

p1 ´ uzq. (L3)

The values ru1,u2,u3s “ RI3,3 form an orthogonal basis such that u3 “ uo, the direction of the object.
The outer points of the spherical object seen by the observer form a circle in the plane defined by u1,u2. If
the object is a distance of r away, an expression for a point r on the outside of the spherical celestial body,
whose radius is R is

r “ ru3 ` Rcospqqu1 ` Rsinpqqu2 (L4)

for some value of q . Eq.(L4) is just the equation for a circle in the plane. Thus, by varying q , one can find
all of the points on the outside of the object that when plotted form the outline of the object as seen by an
observer.
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Appendix M

ACRONYMS AND ABBREVIATIONS

General Acronyms and Abbreviations

2D Two-Dimensional
3D Three-Dimensional
4D Four-Dimensional

ADS-B Automatic Dependent Surveillance-Broadcast
AIS Automatic Identification System
API Application Programming Interface

BCRS Barycentric Celestial Reference System
BDS BeiDou Satellite Navigation System
BDT BeiDou Time

BGGM British Geological Survey Global
Geomagnetic Model

BGI International Gravimetric Bureau
BGS British Geological Survey
BIPM International Bureau of Weights and

Measures
CCD Charge-Coupled Device
CCIR International Radio Consultative Committee
CCTF Consultative Committee for Time and

Frequency
CDS Strasbourg Astronomical Data Center

CFAR Constant False Alarm Rate
CGCS2000 Chinese Geodetic Coordinate System

CGPM General Conference on Weights and
Measures

CIO Celestial Intermediate Origin
CIPM International Committee for Weights and

Measures
CIRS Celestial Intermediate Reference Frame

COSPAR Committee on Space Research
COTS Commercial-Off-the-Shelf
CSTG Commission on International Coordination

of Space Techniques for Geodesy and
Geodynamics

CTRS Conventional Terrestrial Reference System
DARPA Defense Advanced Research Projects

Agency
DE421 Development Ephemeris 421
DE430 Development Ephemeris 430
DMA Defense Mapping Agency

DORIS Doppler Orbitography and Radiopositioning
Integrated by Satellite (Stations)

DTM2006.0 Digital Terrain Model 2006.0
DVD Digital Versatile Disc
EAL échelle atomique libre (free atomic scale)

ECEF Earth-Centered Earth-Fixed
ECI Earth-Centered Inertial

ECOSOC UN Economic and Social Council
EGM2008 Earth Gravitation Model
EMM 2010 Enhanced Magnetic Model

ENU East-North-Up
EOP Earth Orientation Parameters

EPSG European Petroleum Survey Group
ET Ephemeris Time

ETRF89 European Terrestrial Reference Frame
1989

ETRS European Terrestrial Reference System
FAA Federal Aviation Administration

FAGS Federation of Astronomical and
Geophysical Data Analysis Services

FFT Fast-Fourier Transform
G8 Group of 8 Nations

GAGAN GPS Aided GEO Augmented Navigation
System (India)

GAST Greenwich Apparent Sidereal Time
GCRS Geocentric Celestial Reference System

GDGPS Global Differential GPS
GEO Group on Earth Observations

GEOSS Global Earth Observation System of
Systems

GEOTRANS Geographic Translator
GGFC Global Geophysical Fluids Centre
GGOS Global Geodetic Observing System
GIAC GGOS Inter-Agency Committee

GLONASS Russian Federation GNSS System
GLOSS Global Sea Level Observing System
GMST Greenwich Mean Sidereal Time
GMT Greenwich Mean Time

GMTED2010 Global Multi-Resolution Terrain Elevation Data 2010
GNSS Global Navigation Satellite System
GOOS Global Ocean Observing System
GPS Global Positioning System

GPST GPS time
GPStk GPS Toolkit

GSHHG Global, Self-Consistent, Hierarchical,
High-Resolution Geography Database

GST Galileo System Time
GTRF Galileo Terrestrial Reference Frame
GTRS Geocentric Terrestrial Reference

System
HCRF Hipparcos Celestial Reference Frame
HDGM High-Definition Geomagnetic Model

IAG International Association of Geodesy
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IAGA International Association of
Geomagnetism and Aeronomy

IAU International Astronomical Union
ICAO International Civil Aviation Organization
ICET International Center for Earth Tides

ICGEM International Centre for Global Earth
Models

ICRF International Celestial Reference Frame
ICRS International Celestial Reference

System
ICSU International Council for Science

ICSU WDS ICSU World Data System
IDEMS International DEM Service

IDS International DORIS Service
IEEE Institute of Electrical and Electronics

Engineers
IERS International Earth Rotation and

Reference Systems Service
IGeS International Geoid Service (now ISG)
IGFS International Gravity Field Service
IGRF International Geomagnetic Reference

Field
IGS International GNSS Service
IHO International Hydrographic

Organization
ILRS International Laser Ranging Service
IMO International Maritime Organization
IMU Inertial Measurement Unit

INTERMAGNET International Real-time Magnetic
Observatory Network

IOC Intergovernmental Oceanographic
Commission

IODE International Oceanographic Data and
Information Exchange

IOGP International Association of Oil and Gas
Producers

ION Institute of Navigation
ISG International Service for the Geoid
ISO International Organization for

Standardization
ITRF International Terrestrial Reference

Frame
ITRS International Terrestrial Reference

System
ITU International Telecommunication Union

ITU-R ITU Radiocommunication Sector
IUGG International Union of Geodesy and

Geophysics
IVS International VLBI Service for Geodesy

and Astrometry
JCOMM Joint Technical Commission for

Oceanography and Marine Meteorology
JPL Jet Propulsion Laboratory

LAGEOS Laser Geodynamics Satellites
LAST Local Apparent Sidereal Time
LAT Local Apparent Solar Time

LMST Local Mean Sidereal Time
LMT Local Mean Solar Time

LOD Length of Day
LSB Least Significant Bit
MFR Modified Forward Row
MJD Modified Julian Date
MOD Mean of Date
MSL Mean Sea Level
MSP Mensuration Services Program

NAD 83 North American Datum of 1983 (Current
Version NAD 83(2011))

NASA National Aeronautics and Space
Administration

NATO North Atlantic Treaty Organization
NAVD 88 North American Vertical Datum of 1988

NGA National Geospatial-Intelligence Agency
NGS National Geodetic Survey

NIMA National Imagery and Mapping Agency
(now NGA)

NIST National Institute of Standards and
Technology

NOAA National Oceanic and Atmospheric
Administration

NOMAD Naval Observatory Merged Astrometric
Dataset

NORAD North American Aerospace Defense
Command

NOVAS Naval Observatory Vector Astrometry
Software

NRLMSISE-00 Naval Research Laboratory Mass
Spectrometer and Incoherent Scatter
Radar Extended Model 2000

NTP Network Time Protocol
NTSC National Time Service Center of the

Chinese Academy of Sciences
OTCCD Orthogonal Transfer Charge-Coupled

Device
PDF Probability Density Function
PEF Pseudo-Earth-Fixed

PSMSL Permanent Service for Mean Sea Level
QSST Quasi-Stationary Sea Surface Topography

QUEST Quaternion Estimator
QZSS Quasi-Zenith Satellite System (Japan)
RCTA Radio Technical Commission for

Aeronautics
RMS Root Mean Squared

RS/PC Rapid Service/Predictions Centre
SAPOS Satellitenpositionierungsdienst der

deutschen Landesvermessung (Satellite
Positioning Service of the German
National Survey)

SBA Special Bureau for the Atmosphere
SBH Special Bureau for Hydrology
SBO Special Bureau for the Oceans
SGP4 Simplified General Perturbations 4

SIMBAD Set of Identifications, Measurements and
Bibliography for Astronomical Data

SINEX Solution Independent Exchange
SLA Sea-Level Anomaly
SLR Satellite Laser Ranging
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SOFA Standards of Fundamental Astronomy
SOLAS Safety of Life at Sea
SPICE Spacecraft Planet Instrument C-Matrix

Events (Toolkit)
SPOTL Some Programs for Ocean-Tide Loading
SQUID Superconducting Quantum Interference

Device
SRID Spatial Reference System Identifier
SSH Sea-Surface Height

SSHA Sea-Surface Height Anomaly
SVD Singular Value Decomposition
TAI International Atomic Time
TCB Barycentric Coordinate Time
TCG Geocentric Coordinate Time
TDB Barycentric Dynamical Time

TEME True Equator Mean Equinox
TIO Terrestrial Intermediate Origin
TIRS Terrestrial Intermediate Reference System
TLE Two-Line Element
TOD True of Date
TRF Terrestrial Reference Frame
TRS Terrestrial Reference System

TT Terrestrial Time (via TAI or USNO Master
Clock)

UCAC U.S. Naval Observatory CCD Astrograph
Catalog

UN United Nations
UNDG United Nations Development Group

UNESCO United Nations Educational Scientific and
Cultural Organization

URSI International Union of Radio Science
US DoD United States Department of Defense
USGS U.S. Geological Survey
USNO U.S. Naval Observatory

USSTRATCOM U.S. Strategic Command
UT1 Universal Time 1
UTC Coordinated Universal Time

UTC(k) UTC at Laboratory k
VFR Visual Flight Rules
VLBI Very Long Baseline Interferometry

WGS 84 World Geodetic System 1984
WMM World Magnetic Model
WMO World Meteorological Organization

Acronyms of National Laboratories in Figure 8 Contributing to UTC

AOS Astrogeodynamical Observatory, Space Research
Centre P.A.S. (Poland)

APL Applied Physics Laboratory (U.S.)
AUS Consortium of Laboratories in Australia
BEV Bundesamt für Eich- und Vermessungswesen

(Austria)
BIM Bulgarian Institute of Metrology (Bulgaria)

BIRM Beijing Institute of Radio Metrology and
Measurement (P.R. China)

BY Belarussian State Institute of Metrology
(Belarus)

CAO Cagliari Astronomical Observatory (Italy)
CH METrology and Accreditation Switzerland

CNM Centro Nacional de Metrologı́a (Mexico)
CNMP Centro Nacional de Metrologı́a, de Panamá
DLR Deutsche Zentrum für Luft- und Raumfahrt

(Germany)
DMDM Directorate of Measures and Precious Metals

(Serbia)
DTAG Deutsche Telekom AG (Germany)
EIM Hellenic Institute of Metrology (Greece)

ESTC European Space Research and Technology
Centre (European Union)

HKO Hong Kong Observatory (Hong Kong, P.R.
China)

IFAG Bundesamt für Kartographie und Geodäsie
(Germany)

IGNA Instituto Geográfico Nacional (Argentina)
INPL National Physical Laboratory of Israel (Israel)
INTI Instituto Nacional de Technolgia Industrial

(Argentina)

INXE INMETRO - National Institute for Metrology
and Technology - Time and Frequency
Laboratory (Brazil)

IPQ Instituto Portugues da Quaidate (Portugal)
IT Istituto Nazionale di Ricerca Metrologica

(Italy)
JATC Joint Atomic Time Commission (P.R. China)

JV Justervesenet (Norway)
KEBS Kenya Bureau of Standards (Kenya)
KIM Indonesian Institute of Sciences (Indonesia)

KRISS Korea Research Institute of Standards and
Science (Rep. of Korea)

KZ Kazakh Institute of Metrology (Kazakhstan)
LT Lithuanian National Metrology Institute

MIKES Mittatekniikan Keskus, Center for Metrology
and Accreditation (Finland)

MKEH Hungarian Trade Licensing Office (Hungary)
MSL Measurement Standards Laboratory of New

Zealand (New Zealand)
MTC MAKKAH Time Centre - King Abdulah

Centre for Crescent Observations and
Astronomy (Saudi Arabia)

NAO National Astronomical Observatory (Japan)
NICT National Institute of Information and

Communications Technology (Japan)
NIM National Institute of Metrology (P.R. China)

NIMB National Institute of Metrology (Bucharest,
Romania)

NIMT National Institute of Metrology (Thailand)
NIS National Institute for Standards (Egypt)

NIST National Institute of Standards and
Technology (U.S.)
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NMIJ National Metrology Institute of Japan (Japan)
NMLS National Metrology Laboratory of SIRIM

Berhad (Malaysia)
NPL National Physical Laboratory (UK)
NPLI National Physical Laboratory of India (India)
NRC National Research Council (Canada)
NRL Naval Research Laboratory (U.S.)

NTSC National Time Service Center of China (P.R.
China)

ONBA Observatorio Naval de Bueno Aires
(Argentina)

ONRJ Observatório Nacional (Brazil)
OP Observatoire de Paris (France)

ORB Observatoire Royal de Paris (France)
PL Consortium of Laboratories in Poland (Poland)

PTB Physikalisch-Technische Bundesanstalt
(Germany)

ROA Real Instituto y Observatorio de la Armada
(Spain)

SCL Standards and Calibration Laboratory
(Hong Kong, P.R. China)

SG Standards, Productivity and Innovation Board
(Singapore)

SIQ Slovenian Institute of Quality and Metrology
(Slovenia)

SMD Belgium Metrology Service (Metrologische
Dienst) (Belgium)

SMU Slovenský Metrologiċký Ustav (Slovakia)
SP Technical Research Institute of Sweden

(Sweden)
SU Institute of Metrology for Time and Space, NPO

“VNIIFTRI” Mendeleevo (Russia)
TCC Transportable Integrated Geodetic Observatory (Chile)
TL Telecommunication Laboratories (Taiwan)
TP Institute of Radio Engineering and Electronics,

Academy of Sciences of the Czech Republic
UA Scientific-Research Institute for Metrology of

Measurement and Control Systems (Ukraine)
UME Ulusai Metroloji Enstitüsü, Marmara Research

Center (National Metrology Institute) (Turkey)
USNO U.S. Naval Observatory
VMI Vietnam Metrology Institute (Viet Nam)
VSL NMi Van Swinden Laboratorium (Netherlands)
ZA National Metrology Institute of South Africa

A number of the acronyms used to describe international organizations and timescales are taken from
French. Table M1 is a list of the acronyms, the English names and the French names from which the
acronyms originate. Though many abbreviations for timescales come from the French, universal coordinated
time is called “temps universel coordonné” in French. UTC is an evolution of the old universal time (UT)
[226, Ch. 2.7, 2.8, 14], though some use UT to designate UTC. The abbreviation UTC was officially
approved by a resolution of the International Astronomical Union for use in French and English, even though
it does not directly stand for anything in either language [226, Ch. 14.]. The correct English expression for
UTC is ”universal coordinated time.” Additionally, the abbreviation ICSU for the International Council for
Science does not come from French. It comes from the old name of the organization, the International
Council of Scientific Unions.

Table M1: Foreign Acronyms
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SG Standards, Productivity and Innovation Board
(Singapore)

SIQ Slovenian Institute of Quality and Metrology
(Slovenia)

SMD Belgium Metrology Service (Metrologische
Dienst) (Belgium)

SMU Slovenský Metrologiċký Ustav (Slovakia)
SP Technical Research Institute of Sweden

(Sweden)
SU Institute of Metrology for Time and Space, NPO

“VNIIFTRI” Mendeleevo (Russia)
TCC Transportable Integrated Geodetic Observatory (Chile)

TL Telecommunication Laboratories (Taiwan)
TP Institute of Radio Engineering and Electronics,

Academy of Sciences of the Czech Republic
UA Scientific-Research Institute for Metrology of

Measurement and Control Systems (Ukraine)
UME Ulusai Metroloji Enstitüsü, Marmara Research

Center, (National Metrology Institute) (Turkey)
USNO U.S. Naval Observatory
VMI Vietnam Metrology Institute (Viet Nam)
VSL NMi Van Swinden Laboratorium (Netherlands)
ZA National Metrology Institute of South Africa

Acronym English Name French Name
BGI International Gravimetric Bureau Bureau Gravimétrique International
BIPM International Bureau of Weights and Measures Bureau International des Poids et Mesures
CIPM International Committee for Weights and Measures Comité International des Poids et Mesures
CCIR International Radio Consultative Committee Comité Consultatif International Pour la Radio
URSI International Union of Radio Science Union Radio-Scientifique Internationale
TAI International atomic time Temps atomique international
TCB Barycentric coordinate time Temps coordonnée barycentrique
TCG Geocentric coordinate time Temps coordonnée géocentrique
TDB Barycentric dynamical time Temps dynamique barycentrique

Table M1: A list of acronyms of international organizations and time scales taken from French used in English that do
not match the English words.

A number of the acronyms used to describe international organizations and time scales are taken from
the French. Table M1 is a list of the acronyms, the English names and the French names from which the
acronyms originate. Though many abbreviations for time scales come from the French, universal coordi-
nated time is called “temps universel coordonné” in French. UTC is an evolution of the old universal time
(UT) [226, Ch. 2.7, 2.8, 14], though some use UT to designate UTC. The abbreviation UTC was officially
approved by a resolution of the International Astronomical Union for use in French and English, even though
it does not directly stand for anything in either language [226, Ch. 14.]. The correct English expression for
UTC is ”universal coordinated time”. Additionally, the abbreviation ICSU for the International Council for
Science does not come from French. It does not match the acronym, because the acronym comes from the
old name of the organization, the International Council of Scientific Unions.

A list of acronyms of international organizations and timescales taken from French used in English that do not match the
English words.
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[32] R. Bondarescu, M. Bondarescu, G. Hetényi, L. Boschi, P. Jetzer, and J. Balakrishna, “Geophysical ap-
plicability of atomic clocks: Direct continental geoid mapping,” Geophysical Journal International,
vol. 121, no. 1, pp. 78–82, Oct. 2012.

[33] B. Boxenhorn and B. S. Dew, “A position-modulated alignment test technique in the presence of
ship’s flexure,” Journal of Guidance, Control, and Dynamics, vol. 6, no. 4, pp. 246–250, Jul. – Aug.
1983.

[34] T. M. Brace, “Method and system for spectral image celestial navigation,” U.S. Patent 8,355,868 B2,
Jan. 15, 2013.

[35] J. Bradley, “A letter from the Reverend Mr. James Bradley savilian professor of astronomy at oxford
and F.R.S. to Dr. Edmon Halley astronom. reg. &c. giving an account of a new discovered motion
of the fix’d stars,” Philosophical Transactions, vol. 35, pp. 637–661, 1727. [Online]. Available:
http://rstl.royalsocietypublishing.org/content/35/399-406.toc

[36] J. B. Breckinridge, Basic Optics for the Astronomical Sciences. Bellingham, WA: SPIE Press, 2012.

[37] E. Brekke, O. Hallingstad, and J. Glattetre, “Improved target tracking in the presence of wakes,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 48, no. 2, pp. 1005–1017, Apr. 2012.

[38] A. Buchanan et al., “Geomagnetic referencing – the real-time compass for directional
drillers,” Oilfield Review, vol. 25, no. 3, pp. 32–47, Autumn 2013. [Online]. Available:
https://geomag.usgs.gov/downloads/publications/3 geomagnetic.pdf

[39] Le Système international d’unités The International System of Units, Bureau International des Poids
et Mesures Std., 2006. [Online]. Available: http://www.bipm.org/en/si/si brochure/

[40] S. Carlip, “Aberration and the speed of gravity,” Physics Letters A, vol. 267, no. 2–3, pp. 81–87, 13
Mar. 2000.

[41] S. Casotto and E. Fantino, “Evaluation of methods for spherical harmonic synthesis of the gravita-
tional potential and its gradients,” Advances in Space Research, vol. 40, no. 1, pp. 69–75, 2007.

[42] Center for Operational Oceanographic Products and Services. (2013, 15 Oct.) FAQ – tide predictions
and data. [Online]. Available: http://www.co-ops.nos.noaa.gov/faq2.html#26



152 David Frederic Crouse

[43] (2013, 1 Nov.) The world factbook, appendix G. Central Intelligence Agency. [Online]. Available:
https://www.cia.gov/library/publications/the-world-factbook/appendix/appendix-g.html

[44] J. Chen, J. Yuan, C. Guo, Y. Zhang, and P. Zhang, “Progress in technology for the 2005 height
determination of Qomolangma Feng (Mt. Everest),” Science in China Series D, vol. 49, no. 5, pp.
531–538, May 2006.

[45] M. Cheng, J. C. Ries, and B. D. Tapley, “Variations of the Earth’s figure axis from satellite ranging
and GRACE,” Journal of Geophysical Research, vol. 116, no. B1, Jan. 2011.

[46] Y. Cheng, W. D. Banas, and J. L. Crassidis, “Quaternion data fusion,” in Proceedings of the Itzhack
Y. Bar-Itzhack Memorial Symposium on Estimation, Navigation, and Spacecraft Control, Haifa,
Israel, Oct. 2012. [Online]. Available: http://ancs.eng.buffalo.edu/pdf/ancs papers/2012/barsym.pdf

[47] T. Chiba, “The constancy of the constants of nature: Updates,” Progress of Theoretical Physics, vol.
126, no. 6, pp. 993–1019, Dec. 2011.

[48] China Satellite Navigation Office, “BeiDou navigation satellite system signal in space
interface control document,” BeiDou Navigation Satellite System, Tech. Rep., Dec. 2012,
possibly available from www.beidou.gov.cn but some firewalls block the server. [Online].
Available: http://www.gpsbusinessnews.com/Chinese-GNSS-Constellation-BeiDou-Now-Opened-
for-Public-Usage a4006.html

[49] T. L. Chow, Classical Mechanics, 2nd ed. Boca Raton: CRC Press, 2013.

[50] “Analysis of least-squares attitude determination routine DOAOP,” Computer Sciences Corporation,
Tech. Rep. CSC/TM-77/6304, 1977, prepared for Goddard Space Flight Center.

[51] J. L. Crassidis, F. L. Markley, and Y. Cheng, “Survey of nonlinear attitude estimation methods,”
Journal of Guidance, Control, and Dynamics, vol. 30, no. 1, pp. 12–28, Jan. – Feb. 2007.

[52] D. F. Crouse, “On measurement-based light-time corrections for bistatic orbital debris tracking,”
IEEE Transactions on Aerospace and Electronic Systems, accepted, 2015.

[53] ——, “Advances in displaying uncertain estimates of multiple targets,” in Proceedings of SPIE: Sig-
nal Processing, Sensor Fusion, and Target Recognition XXII, Baltimore, MD, Apr. 2013.

[54] ——, “Basic tracking using 3D monostatic and bistatic measurements in refractive environments,”
IEEE Aerospace and Electronic Systems Magazine, vol. 29, no. 8, Part II, pp. 54–75, Aug. 2014.

[55] ——, “Basic tracking using nonlinear 3D monostatic and bistatic measurements,” IEEE Aerospace
and Electronic Systems Magazine, vol. 29, no. 8, Part II, pp. 4–53, Aug. 2014.

[56] ——, “On implementing 2D rectangular assignment algorithms,” IEEE Transactions on Signal Pro-
cessing, 2014, submitted 2014.

[57] ——, “Basic tracking using nonlinear continuous-time dynamic models,” IEEE Aerospace and Elec-
tronic Systems Magazine, vol. 30, no. 2, Part II, pp. 4–41, Feb. 2015.

[58] ——, “Simulating aerial targets in 3D accounting for the Earth’s curvature,” Journal of Advances in
Information Fusion, vol. 10, no. 1, Jun. 2015.



Coordinate Systems for Target Tracking 153

[59] D. F. Crouse, Y. Bar-Shalom, and P. Willett, “Sensor bias estimation in the presence of data associ-
ation uncertainty,” in Proceedings of SPIE: Signal and Data Processing of Small Targets, vol. 7445,
San Diego, CA, 2 Aug. 2009.

[60] D. F. Crouse, R. W. Osborne III, K. Pattipati, P. Willett, and Y. Bar-Shalom, “Efficient 2D sensor
location estimation using targets of opportunity,” Journal of Advances in Information Fusion, vol. 8,
no. 1, pp. 73–89, Jun. 2013.

[61] J. J. Danielson and D. B. Gesch, “Global multi-resolution terrain elevation data 2010
(GMTED2010),” U.S. Department of the Interior, U.S. Geological Survey, Reston, VA, Tech. Rep.
2011-1073, 2011. [Online]. Available: http://pubs.usgs.gov/of/2011/1073/pdf/of2011-1073.pdf

[62] P. B. Davenport, “A vector approach to the algebra of rotations with applications,” Goddard Space
Flight Center, National Aeronautics and Space Administration, Greenbelt, MD, Tech. Rep. TN D-
4696, Aug. 1968.

[63] Defense Advanced Research Projects Agency. (2014, 24 Jul.) Beyond GPS: 5 next-generation
technologies for positioning, navigation & timing (PNT). [Online]. Available: http://www.darpa.mil/
NewsEvents/Releases/2014/07/24.aspx

[64] M. H. DeGroot and M. J. Schervish, Probability and Statistics, 3rd ed. Boston: Addison Wesley,
2002.

[65] Department of Defense, “DMA technical manual: Datums, ellipsoids, grid, and grid reference
systems,” Defense Mapping Agency, Tech. Rep. DMA TM 8358.1, Sep. 1990. [Online]. Available:
http://earth-info.nga.mil/GandG/publications/tm8358.1/pdf/TM8358 1.pdf

[66] ——, “Addendum to NIMA TR 8350.2: Implementation of the World Geodetic System 1984
(WGS 84) reference frame G1150,” National Imagery and Mapping Agency, Tech. Rep., 2003.
[Online]. Available: http://earth-info.nga.mil/GandG/publications/tr8350.2/Addendum%20NIMA%
20TR8350.2.pdf

[67] ——, “Department of Defense World Geodetic System 1984: Its definition and relationships with
local geodetic systems,” National Imagery and Mapping Agency, Tech. Rep. NIMA TR8350.2,
Jun. 2004, third edition, Amendment 2. [Online]. Available: http://earth-info.nga.mil/GandG/
publications/tr8350.2/wgs84fin.pdf

[68] ——, “WGS 84 G1674 geodetic control network upgrade for areas of White Sands Missile Range
and Holloman AFB, NM,” National Imagery and Mapping Agency, Tech. Rep., 1 Jul. 2012. [Online].
Available: http://www.wsmr.army.mil/pdf/G1674-Upgrade-01Jul2012.pdf

[69] ——, “Department of Defense world geodetic system 1984: Its definition and relation-
ships with local geodetic systems,” National Imagery and Mapping Agency, Tech. Rep.
NGA.STND.0036 1.0.0 WGS84, 8 Jul. 2014. [Online]. Available: http://earth-info.nga.mil/GandG/
publications/NGA STND 0036 1 0 0 WGS84/NGA.STND.0036 1.0.0 WGS84.pdf

[70] Department of Defense, Navy, Nautical Almanac Office, The Astronomical Almanac for the Year
2014. Department of the Navy, 2013.



154 David Frederic Crouse

[71] K. Dismukes. (2011, 23 Sep.) Definition of two-line element set coordinate system. National
Aeronautics and Space Administration. [Online]. Available: http://spaceflight.nasa.gov/realdata/
sightings/SSapplications/Post/JavaSSOP/SSOP Help/tle def.html

[72] A. T. Doodson, “The harmonic development of the tide-generating potential,” Proceedings of the
Royal Society A: Mathematical, Physical & Engineering Sciences, vol. 100, no. 701, pp. 305–329, 1
Dec. 1921.

[73] T. D. Downs, “Orientation statistics,” Biometrika, vol. 59, no. 3, pp. 665–676, Dec. 1972.

[74] D. P. Drob, “The NRLMSISE-00 and HWM-93 users guide,” United States Naval Research Labora-
tory, Tech. Rep., Nov. 2003, documented included with NRLMSISE-00 code.

[75] N. H. Durland, “Defining mean sea level in military simulations with DTED,” in Proceedings of the
2009 Spring Simulation Multiconference, San Diego, CA, 22–27 Mar. 2009.

[76] D. W. Eggert, A. Lorousso, and R. B. Fisher, “Estimating 3-D rigid body transformations: A com-
pairson of four major algorithms,” Machine Vision and Applications, vol. 9, no. 5–6, pp. 272–290,
Mar. 1997.

[77] M. Ekman, “Impacts of geodynamic phenomena on systems for height and gravity,” Bulletin
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